athenaCL Tutorial Manual

Third Edition, Version 2.0.0a15

Christopher Ariza

athenaCL Tutorial Manual: Third Edition, Version 2.0.0a15
by Christopher Ariza

athenaCL 2.0.0a15 Edition
Published 7 July 2010
Copyright © 2001-2010 Christopher Ariza

athenaCL is free software, distributed under the GNU General Public License.

Apple, Macintosh, Mac OS, and QuickTime are trademarks or registered trademarks of Apple Computer, Inc. Finale is a
trademark of MakeMusic! Inc. Java is a trademark of Sun Microsystems. Linux is a trademark of Linus Torvalds. Max/MSP is a
tradematk of Cycling '74. Microsoft Windows and Visual Basic are trademarks or registered trademarks of Microsoft, Inc. PDF
and PostScript are trademarks of Adobe, Inc. Sibelius is a trademark of Sibelius Software Ltd. SourceForge.net is a trademark
of VA Software Corporation. UNIX is a trademark of The Open Group.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details. http:/ /www.fsf.org/copyleft/gpl.html

Table of Contents

] 32 (S 1ol ISP PP xii
1. Overview of the athenaCL SYStemccocovuiiiiiiiiiiniii e xil
2. Getting Started and Advanced WOrkcccoocuviiiiiiiiiiiccc e xiii
T\ [e¥ =Tl Ba¥ o} u's 111 (03 s HUURNEN TSR xiii
4, Conventions Used in This IManUal........ccocveeiiiiiiiiiiciceiceete ettt s sve e ens xiii
5. Production Of This ManuUalcccociiiiiiiiiiniiiieiieteseesie et sstesstesaesssessesssesssessesssesssesressaesssesnes xiv
1. Tutorial 1: The Interactive Command Line INtetfaceccceveeierrenniiiieenrieierneieereeneneeeeeenneeeenns 1
1.1. Starting the athenaCL INtEIPIEtErc.ouiiiiiviiiiiiiiiiieicc e 1
1.2, Inttoduction tO COMMANGS ..covvivviiiiiiiiiiceecste ettt ettt e st et e st e sbeesbesbeesbesaeesseesbesnsesneesres 1
1.3. Viewing Command NAMEScccociiiiiiiiiiiiiiii s ssnaes 2
1.4. Executing ComMAndS.......ccuviiuiiiiiiemiiiiiiieiiiciiieesice st sessssesssssans 3
1.5. Getting Help for COmMMANdS.....c.ovovueuriieeiriniiieiiciniieieiciesieessiessesesessessee e sensesessessens 4
1.6. Configuring the User ENVIFONMENT.....ccciiiiiiiiiiiiiiiiccicieirirsicccieie s 6
2. Tutorial 2: AthenaObjects and EventModes.uueeeiiiiiiiiiiinneeeeiieiiiiiiinnneeeeecnnnmmneeeeeeeees 9
2.1. Introduction to AthenaODbJeCtSccoviiuiiiiiiiiiiiciii s 9
2.2. File Dialogs in athenaCL.........cccccoviviiiiiiiiiniiiiiic s 9
2.3. Loading and Removing an AthenaODbjJectcouiiiiuiiiiiiiininiiiciiicsccceesscceenes 9
2.4. EventModes and EventOutPuts ..o 11
2.5. Creating an Bventlist ... 12
2.6. Configuring and UsiNg CSOUNd.......ccuiuiueuriiieiriieiriiieiriceiiieeteeeseeie e seesesessese e ssssesens 14
2.7. Saving and Merging AthenaODbJECESccvuiiviririiiiiiciccce e 15
3. Tutorial 3: Creating and Editing Pathscciivviiiiiiniiiiiiiiniiiiiiieinenneeccnnne 18
3.1, INtrOAUCHON O PAtRIS c.viiuviieiieeiiceiieeetieteet ettt ettt st ettt st st e sasesbeesaesntesasesbeessesnsesns 18
3.2. Creating, Selecting, and Viewing PathInstancesccocoevvieeniiciniceniceeecsneeeeenens 18
3.3. Copying and Removing PathINStancesccovviiecciiiiiiiininiicceeeiesiceceeesseseeeenenes 21
3.4. Editing PathINStances ... 22
4. Tutorial 4: Creating and Editing TeXturesccccuiiiiiinniiiininnnieeiiieemieemeemee 25
4.1. Introduction to Textures and ParameterODbJects.......cvviiuviiiiiiniiiinieiicceeeeenns 25
4.2. Introduction INnStrument IMOELSoovivviiieiieeicicieeeeeeeeee ettt s ens 26
4.3. Selecting and Viewing TextureModules ..o 28
4.4. Creating, Selecting, and Viewing TextureInstances ..., 30
4.5. Copying and Removing Texture INStances......ooucuriciriricirinieiriicieieenieeneeeseseeseeesenens 35
4.6. Editing TextureInstance AttrDULEScccceuiiviiriiiiieirinciccceei e 36
A7, MUHING TEXTULES ...ttt 37
4.8. Viewing and Searching ParameterODbjJects......ooviuiiiiiniiiiiiiiiiiciiieicececenccenns 38
4.9. Editing ParameterODIECLS ...cuvueueviiuiiiiieiriieiieieirieie ettt sssesesssseseens 42
4.10. Editing Rhythm ParameterODbJeCts.......ccviiiiiiiiiiiciiiciiccceeisicee e 44
4.11. Editing Instruments and Altering EventModeccocoiviviiiiniininicniiiccccinns 47
4.12. Displaying Texture Parameter ValUues ..o 50
5. Tutorial 5: Textures and Paths ...cucceuceeeiiieiiiiiiiiieeiieeeereereeereeeseeessersessssessssesseessesssssssessssssses 52
5.1. Path Linking and Pitch Formation Redundancy ... 52
5.2. Creating a Path with a Duration Fraction........cccccceiiiiiniiiiicce s 52
5.3. Setting EventMode and Creating @ TeXtULE ..ot 54

7

D, PIECRIMOAE ittt ettt e e et v et esat s st s b e s b e s st esst e st sstesssesesasesasesasenssenssonsesrseseon 55

5.5. Editing LOCAl OCAVE ..euuvirieiiieiiiiciieie ettt 57
5.6. Editing Local Field and Temperamentccceceeueieininininiiicceeiniisiiseceesessesesesessesenes 58
6. Tutorial 6: Textures and ClONESccuueeiiiiuiiriiiiiiiiiiiiiieeiirereecnree e eesssseseees 60
0.1. Introduction tO CLONESc.cuvuviiiieiiiiieieieieiitcceeetetee ettt 60
0.2. Creating and Editing CLONESccvuiiieiiieiriiciicieiieeiccceeeesee e saenens 60
7. Tutorial 7: Scripting athenaCL in Pythonciiiiiiiiiiniiiiiiniiiieiieenneenneeeen. 65
7.1. Creating an athenaCL Interpreter within Python ... 65
7.2. Creating athenaCL Generator ParameterObjects within Python ... 05
7.3. Creating athenaCL Generator ParameterObjects within Csoundcccevveeecvvicivnienncnnee. 066
A. Installation Instructions (readme.tXt)....ccccceeiiiiiiiiunrieeeeiiiiiiiiiiiniieeeeeeennnnnrieeeeeeeessesssnnnns 67
B. Command Referenceuuuuvmuiviieiiiiiinieeccctiecctnecstee st aee s aee e aae e 7
B.1. AthenaHistory Commands..........ccccuiuiiiiiiiiiiiiiecsss s 71
B.2. AthenaODbject COMMANGScoveuriiuiiriiiieiiiiiieeteeee e 71
B.3. AthenaPreferences Commandsccccovviviiiiiiciiininininiicccceeee s 72
B.4. AthenaUtility COMMANdScceuiiiiiiiiiiiiiiiiiiic s 73
B.5. EventList COMMANAS....c.ciiuiiiiiiiiiiiiiciiiiiiciiscesissssse s sseseoas 75
B.6. EventMode COMMANGS......cvuiiiiiiiieiiiciicieiicietceieetieiesesese s sssseseens 76
B.7. EventOutput COmMMANAScccciuiuiiiiiiiiiriiicicicicieiriccceieeeseee s senes 77
B.8. PathInstance COmMMANdS......cccceeueueuiiiinininiiccieieieirneceerete e seaes 77
B.9. TextureClone Commands........coeuiieiiiriiiniiciiiciiii s 80
B.10. TextureEnsemble COMMANMSccvevieiieiriniieiiiciicececeteceeee e 81
B.11. Texturelnstance COMMANASccueuiiriviriniiiiiieiiiicceee e 82
B.12. TextureModule COMMANGScceueririrriniiiiiieieieinirrieceeiere et seaes 84
B.13. TextureParameter COMMANAScoivriiiiiiciiiiiiii e 84
B.14. TextureTemperament COMMANAScceuiuiuemrieiueiriieiieieiieerseeseeeeseeseseseesese e sessssesenas 85
B.15. Othetr ComMANASc.cuviiiiiiiiiiiciiiic e es 86
C. ParameterObject Reference and Examples.......ccouuivnmiiiiieiiiiiiiniininiineeeiiinnnnieeeeeneennnn. 87
C.1. Generator ParameterODJects ..o 87
C.2. Rhythm ParameterODJECESccuuiuemiiiiieiicieiiciriieece et 165
C.3. Filter ParameterODJECES ..ot 178
C.4. TextureStatic ParameterODbJectscoviiviiiiiiiiiiiiiiieiiii e 190
C.5. CloneStatic ParameterODIECtsccvuiiiriiiiiiiiiiiieiiiiiciesise e sessssssons 195
D. Temperament and TextureModule Reference.........cccuueveeiiiiieiiiiniieeinniineeienineeeeennnn, 197
D1, TEMPEIAMENLS .ttt bbb 197
D .2, TeXtUIEMOUIES.......cuiueviiriiiiccciee ettt 198
E. OutputFormat and OutputEngine Reference.......ccccuvvunniiiiiiiiiiiiiinnnnniiiciiiiniininnnneneen, 201
E.1. OUutputFOrmMAts ..o 201
E.2. OUtPUtENGINES ..ot 202
F. Demonstration Command Scripts in Python........ccouiiiiiiiiiiiiiiiiniiniiieecicinnnnneeeeee, 204
F.1. MIDI-based OULPUL c..cucviuiiiiiiiiiiiiiiiii ittt sees 204
F.2. C30und-based OULPULc.cucuiuieciriiciiriciecrcee e 220
G. Frequently Asked QUESTHIONS ...cceeeiiiiiiiininiiiieiiiiiiiiiiiiieeeeenccnnirreeeeeeeeessannssseeeesssssanns 228
REfEIENCES wevernneiieiieiieeeecteeeceee et sa e s s aa e s a e s naa e s 231

w

List of Examples

1-1. Initialization INFOIMATION ...cviuiviiiieciicicicc e 1
1-2. Listing all cOMMANAScoviiiiiiiiiiiiiii s 2
1-3. Entering a COMMAN ...cvueuiiiuiiiiiiiiiiiiiciciiei sttt sssans 3
1-4. Entering a command With afgUmENEScceurieueiiieiniiiiniceieesree et seesenens 3
1-5. Displaying a command HStINEccccieuiuiiiiiininiiiieceieieiccereressisse e aeses s 4
1-6. Using the help commandccciiiiiiiiii s 4
1-7. Accessing additional help tOPICScucviuiiiiiiiiiiiiiciicii s 5
1-8. Toggling the athenaCL cursor tool With APCULS......c.ccvciuiiiiiiiiiiciricrccrcece s 6
1-9. Setting the scratch directory with APdif.......cociviiiiiiiiiiiiii s 6
1-10. Creating a MIDI file with PTh......cccccoiiiiiiiiiiiiiiiiii s 7
1-11. Setting the active graphics format with APZEXcccouviiiiiiiiiiiiiiiicccccees 7
1-12. Producing a graphical diagram with TPMapccccvuviiiiriieininiicerecreeecece s 7
2-1. Changing the file dialog style with APAIg.........ccccoviiiiiiiiiiiiiiii e 9
2-2. Loading an AthenaObject with text-based file seleCtion ..o, 10
2-3. Listing TextureInstances With TilS........ccocciiiiiiiiiiniiiiiee s 10
2-4. Reinitializing the AthenaObject With AOLM ..o 10
2-5. Loading an AthenaObject from the command-line........cccccceeuiiiinininiciciiinccceeee 11
2-6. Viewing EventMode and EventOutputs ... 11
2-7. Adding and Removing EVEntOULPULSc.ceveueiiiiiiiiiiiiiiiicieiiciessiiee s sesssesnns 12
2-8. Creating a new EventList with Eln.......cccccooiiiiics 13
2-9. Opening an BEventList with Blh......ccccooviii e 13
2-10. Creating a new EventList with Eln and command-line arguments..........ccocvuvrevviviervicccnninnnenn. 14
2-11. Changing the Csound audio file format with CPff.........cccccouviiiviiiiniiiiiiicncccn, 15
2-12. Rendefing 2 CSOUNA SCOLE ...viuiuiiiiiiiiieiieiicieicie ettt 15
2-13. Opening Csound-generated audio files with ELh.......cccccooiiiiiiiiiiiiiiccccc, 15
2-14. Merging AthenaObjects With AOME......ccviiiiiiiiiiiiiiii s 16
2-15. Listing TeXtureINStaANCEScuvvviiiiiiiiiiiiiiic s 16
2-16. Creating a new AthenaObject With AOWccviiiiviiiiiicrcecee e 17
3-1. Creating a new Pathlnstance with PIn.......cccccooicc, 18
3-2. Viewing a Path with PIV......ccccoviiiiii e 19
3-3. Creating a MIDI file with PINcccooiiiiiiiiiiiiiiiiie s 19
3-4. Creating a Path with Forte NUMDELSc.cccuiiiiiiiiiicccecc e 19
3-5. Displaying @ Path.......ccccciiiiiiiiiiic e 20
3-0. LIStING PAthiS ..o 20
3-7. Selecting PAthiscvuiiiiiiiiiciiiciic s 21
3-8. Selecting a Path with an argument.........cccviiiiiiiii e 21
3-9. Copying a Path With PICP ...ccviiiiiiiiicc e 21
3-10. Removing a Path with PIfm ... 21
3-11. Creating a retrograde of a Path with PIretcccccoviiiiiiiiiiiniiiiniiiiicnicccccee e 22
3-12. Creating a rotation of a Path with PIrot. ..., 22
3-13. Creating a slice of a Path with PISIC......cccccoiiiiiii, 22
3-14. Transposing a set within a Path ..., 23
3-15. Replacing a Multiset With @ NeW MULSEL......ceviiiiiiiiiiiriiiiccirice e 23
4-1. Listing available Instruments With EMi......cccccoeiiiiiniiiiiniiiciicciceececieeeeseeee e 26
4-2. Examining additional Instruments with EMi ..o, 28

4-3. Listing TextureModules With TIMIScccccvviiuiiiiiiiniiniiiiiesiceie s 29

4-4. Selecting the active TextureModule With TIMO......ccccouieiriieiriieirieerice e 29
4-5. Viewing details of the active TextureModule ..., 30
4-6. Creating a new Texturelnstance with TIN ..., 31
4-7. Creating a new EventList with ELN ...cccoooviiiiii e 31
4-8. Viewing a TeXtureINStanCe ..ot 31
4-9. Creating and viewing a TexturelnsStance. ... 33
4-10. Listing all TexXturelNStances......ccvviiiiiiiiiiiiii e 34
4-11. Selecting the active TeXtUIEINSTANCEcuviieiuiiiiiicic e 34
4-12. Viewing parameter values for all TeXtUIES ... 34
4-13. Copying a TexXtUreINStANCEvvuiieciiiiiciiiccce et 35
4-14. Removing a TexturelNStance. ..o 35
4-15. Editing @ TeXtUrEINSTANCE ...c.cviuiiiiiiiiiiiicteiic i 36
4-16. Editing a single parameter of all Textures with TEeccccoviiiiiiniicrcnceceen, 37
4-17. Generating a graphical display of Texture position with TEMApcccccovvrvviciviiiiiicninnn, 37
4-18. Muting a Texture With TIMULEccovviviiiiiiiiiii s 38
4-19. Removing mute status With TIMULE.......ccovieuiiiiiiiiiiiicc e 38
4-20. Displaying all ParameterObjects With TPIS........ccceviiiiiiiieiiiirierieerceee e 39
4-21. Viewing ParameterObject reference information ..., 41
4-22. ParameterObject Map display with TPmMapcccccoviiiviiiiiiiiiiiicccccccccnnne 42
4-23. ParameterObject Map display with TPmMapcccceviiiiviiiiiininiiiciiicrcccicecece e 42
4-24. Editing the panning of a TeXturelNStANCE.ccovveuiuriiieiriicirceere e 42
4-25. Editing the panning of a TeXturelNStancCe.cococeuiurivivininiiieiiiirce e 43
4-26. View Pulse and Rhythm helpccccocviiiiiine 44
4-27. Editing Rhythm ParameterObjects wWith TIe......ccccviiiiiiiiiiiiiniiiicccce e 45
4-28. Editing Rhythm ParameterObjects With TIe......cccoviiiiriieiriiciicercceceec e 46
4-29. Editing BPM With TEe.....ccccoiiiiiiiiiiiiii s 47
4-30. Changing EventMode and editing Texture inStrumMent.......cocueuvirueriinieriieiiiicesieenesessenens 47
4-31. Examining Texture documentation with TIAOC........ccccvuiuiiiiiiiiinininiiiiiicicccene 49
4-32. Creating a new Eventlist with ELN....ccccooviiiiiiee 50
4-33. Viewing a Texture wWith TIMAaP ..c.ccoiviiiiiiiiiiic e 50
5-1. Creating a Path with PIn ..o 52
5-2. Altering a Path's durFraction with PIAf........ccccooiiiiiiiiiiiiicicecceeeee e 53
5-3. Creating a Texture with TM LiteralVerticalcccccocvuviviiiiiiiiinininiiicicicncccceene 54
5-4. BAItING 2 TEXTULE....ucuiiiiiiiiiiicceir e 55
5-5. Editing PitchMode of a TeXtureINStance ..o 56
5-6. Editing LoCal OCAVEovuiviiiiiiiiiciiiiic st 57
5-7. EdItING TEXIULESTALIC ...cvuvuvuiririeieiiieieiieieiceiet sttt 58
5-8. Listing all TexXture TEMPEIamMENLsc.ouvuriiiiieieieiiiiiiicceeieete st 59
5-9. Selecting Texture Temperament With TTOccccciviiiiiiiiiiiiii e 59
0-1. Creating @ TEXTULC ...cucuiiiiiiiiiiiii bbb 60
6-2. Creating and Viewing a Clone with TCn and TCV ... 61
0-3. Editing a Clone With TCeccceuiiiiiiiiic e 62
0-4. Listing and Selecting Clones with TCIs and TCo........cccovuivviiininiciiiiii s 62
0-5. Creating and Editing ClONES.......c.cvviuiiiiiiiiiiiiiiiiiieeiesies s 063
06-6. Viewing Textures and Clones with TEMAP ..c.cocceiviiicininiiiiciiccceeee e 03
7-1. An athenaCL Interpreter in PYthon ..o 65
7-2. Creating a Generator ParameterODJECt ... 66

v

C-1. accumulator DemONSIAION T ..viivuiiiieiiiieiiiiiicitceteeeeeeee ettt st e s saeesteessreessaeesssesaseessseesssesseesseesnses 87

C-2. accumulator DemONSTIAtION 2....oiiiieeieirieiieriereeeeeeeteee et eteste et et e et eee e et esesessesseeseessessersessensensensenes 87
C-3. basketFill DemoOnStration T.......ciccvccvieeirieeieieieteeeee ettt ere e e et esessesseeseereerseneereessensensensenes 88
C-4. basketFillSelect DemONStIatiON 1cvcivicuieriiriceieeeeeeceeeeeteeteete et ettt esesreess v ereeseersensensensensenes 88
C-5. basketGen DemONStIation L. ...iviiiiciieeiriieecieeeteetese ettt et sse e et esseteese st eesessessessesessesensersesensensens 89
C-6. basketGen DemONSTIAION 2....c.ivviverierieereerieeeeecreeereereeseeereseeeeseesesseressessesessessesessessessesesesensessesessensens 89
C-7. basketGen DemONSIAtION 3. ...ciiiiieeieirieriereeteeeee ettt et et eteere et ereeeesesesesseeseesseseesseseessensensensenes 89
C-8. breakGraphFlat Demonstration 1 ... 90
C-9. breakGraphHalfCosine Demonstration 1ccccccviieiniieiiiciiiniiiicecesicessse e 91
C-10. breakGraphLinear Demonstration 1. ..o sessesesenns 91
C-11. breakGraphPower Demonstration L. 92
C-12. breakPointFlat DemoOnStration 1c.covioieeiieiceieeeeeteeeeeeeeteeteete ettt sreere s ereeseersensensessensenes 93
C-13. breakPointFlat DemMONSTIALION 2 ..cicvieeriiriieriereeeeerieeeereeeeeresseeeressessesessesesesessesessessessssensessssensens 93
C-14. breakPointFlat DemMONSIIAtION 3cviveiirieerictieeeeeetieereereeee et eseseereesesseresseeesessesseseesenseseesensesensensens 93
C-15. breakPointHalfCosine Demonstration Tcccecievveeieeriorectieeeeeeceee ettt et ete e eve e es v s 94
C-16. breakPointHalfCosine DemONSIation 2cucveeevevveereerectiereereereeeeeeseeereereeseeseeseeseereeseeseensessessenns 94
C-17. breakPointHalfCosine DemOnStration 3cccvvevierivreveerinreiereneeeeressereeressesesessesesessesesessessessesensens 94
C-18. breakPointLineatr DemONStIAtion ©......cocivveiiiieeeietiereeereeeeereeeee ettt ereeers e ere s ereesensereerensens 95
C-19. breakPointLineatr DemONStIAtION 2...cvccuieuiereereeeeeereereeeereeteeteete et eeeseeeseesessessesseeseeseessessesessessessenss 95
C-20. breakPointLineatr DemONStIaAtiON 3......coiovivriiieeeeerireeeeeeeteere ettt eeesteereesessesseereeseessersessensesseesenes 95
C-21. breakPointPower Demonstration ©......coiviiiieviereerinreiireeeeereseeeeresseeereereeesesessesessessesessesseseeseneens 96
C-22. breakPointPower DEMONSIIALION 2...c.ccviiriveriereeeeeeetiereeereeeeeteeteeeresseseeseesessesessessesessessessesensessesensens 96
C-23. breakPointPower DemoOnStration 3.......cocicieieeeieirereeeereeteeteete et eeeseeeteesessessesseeseeseeseessessesessessenes 97
C-24. basketSelect DemMONSTIAION T ..oouviiiiiieiciieiiciieeicecrect ettt ettt ettt esreereereeseersensensensensenes 97
C-25. constant DemoOnStration Tcviiiivieiiiieeceeeeeeeet ettt e e e et et bessesresveebeessereessessensensanes 98
C-26. cyclicGen Demonstration 1 ... 98
C-27. cyclicGen DemOnStration 2cccccueieiiirininiiieieieieisiitticeeese et ese e ssaeas 99
C-28. calList DemMONSIAION T .iiiiiiiiiiiieiiiericeieereceestecere et eteeeteeereeereeseereesseeseetsesseesseesseeseersenseeseessesssesseens 100
C-29. calList DemONSIATION 2 ..viiuieeeeiieieieiieiieereeeeteeeeteereetestestesteeseesssseeseeseessessessessessesssessesesssessessessessenses 100
C-30. caValue DemoOnStration L.....iiciciiciicieeiieiiceeeeceeteete ettt ettt ee s s e saessesteebeersesseseessensensensensas 101
C-31. caValue DemMONSIIATION 2u..uicuiceieeeeieereerieteceeeeeteeteeeeeeeeteeteeseeseeseeseeseessessesessesseeseessessessessensensesessenses 101
C-32. caValue DemMONSIIAtION Bu..uicuiieiceeeiiieeeietecteeeeteeteete et et ere e ereeseeseeseessesensesseeseesseseesseseessensensensenss 102
C-33. envelopeGeneratorAdst Demonstration L. 103
C-34. envelopeGeneratorAdst Demonstration 2.......ccccceurieerrieieeniieieeseesieessiessessesessesesesseses 103
C-35. envelopeGeneratorAdst Demonstration ... 103
C-36. envelopeGeneratorTrapezoid Demonstration 1 ... 104
C-37. envelopeGeneratorTrapezoid Demonstration 2 ... 104
C-38. envelopeGeneratorTrapezoid Demonstration 3 ..o 105
C-39. envelopeGeneratorUnit Demonstration 1ccccceevviniiiininnniiicccccceneceeeeeene 105
C-40. envelopeGeneratorUnit Demonstration 2ccceviiiiciiiiessessssssnnes 106
C-41. funnelBinary Demonstration L....c.cccciiciiinincteceeieeiseeiesesesesss s eesesesesesesssssseas 106
C-42. funnelBinary DemONStration Z........cccviiiiiiniiiiiiiciesissiieeee st sssssses 107
C-43. feedbackModelLibrary Demonstration 1 ...t 107
C-44. fibonacciSeties DemMONSTIATION T ...oovivviiviciiiiiericieeceeeteeteeeeteete ettt et ereens s enseeseerennas 108
C-45. fibonacciSeries DEmMONSIATION 2..cuiiviierieriierierereeerieeteeree ettt ereeresseseeressereesessessesesessesessessessasenes 108
C-46. fibonacciSeries DEMONSIATION 3..vivieiiriiriiericreeeeierieetecreeete ettt ss e ereeereereeerseressesserensensessnsens 108
C-47. grammarTerminus Demonstration ... 109
C-48. henonBasket DemONStration L.o.ccicioiciieiceeeeeceeeeecteeteete ettt v vt sre v ere e ensensesensensennas 110

vii

C-49. henonBasket DemONSTIAtION 2...c.iiivceeriiriieriereeeeereeetecreeereeresseseesessesesesseseesessessessssessesessessesenseses 110
C-50. henonBasket DemONStIAtion 3........ccocviiuiiierieieieieieetecte ettt eeeeetetestessesseereeseessessesensensesensas 110
C-51. iterateCross DemONStratiON 1 ...c.ccvioiicviiuiciieeieeeeeeeeeeeeeeteete ettt eseevesseereereete e ensensensensensennas 111
C-52. iterateCross DEemMONSIATION 2 ..oovieriicieeeeereeereeereeireeteeeteeereerreeseereesseesseessesseesseesseessesssesssesseessessessseens 111
C-53. iterateGroup Demonstration L. 112
C-54. iterateGroup Demonstration 2.........cccvviiiiiininiiiiiesiisise st 112
C-55. iterateHold DemonStration Tcccoiiieiiieieeeeeeeeeeeetecte ettt ev et sseereereese e ensensensensensennas 113
C-56. iterateHold DemMONSTIATION 2 ...oouvieeiriiiciiceecieeeeeeteee ettt eae et essessesseereeseessensensensensensennas 113
C-57. iterateSelect DemONSTIATION T ..iiiivieiiiiiiiieiceeeeiere et ete et ee s et s estestesbesbeeree e essensensensessensas 114
C-58. iterateSelect DemMONSTIATION 2 ...cvivvieieerierieiieieeeeeeete et eteeteete et ete e e eseeses et essessesseeseessessensensensensensenss 114
C-59. iterateWindow Demonstration Tcooicieriiierieeeireeeeeecteereeteete et eeveeae s ere e et ese s eseseeseesennas 115
C-60. iterateWindow DEmMONSTIATION 2 ...ooviviiricriceiereeeeeeeeteteeeeete et et e eeeeeesessessesseerseseessensensensessessennas 115
C-61. lorenzBasket DemoONStration T ...iiiiicieiiiieiirieeeereeerecree et eres et eresseeesessereese s erseressessesensessesensenes 116
C-62. lorenzBasket DemMONSTIALION 2...ouviviiveeierierieeriereeeeereeeteereneeseereeseseeressesesessessesessesseseesessesessensesenseses 116
C-63. logisticMap Demonstration 1ccccciiiiiiiiiniiiiiccceiesceee e 117
C-64. logisticMap DemOnstration 2 ... ssssssesssesssssss 117
C-065. logisticMap DemOnstration 3 ... sssesesnans 118
C-606. listPrime DemoONStration T....ociiicciiciiciieiiceeeecreeeete ettt ettt ee et saessesteebe s e s ensensensensensensas 118
C-67. listPrime DEmMONSIATION 2...vieuieeeeeereereeteeteeteeteeteeteeeeeteeteeseereeseeseeeeseessesessesseeseessessessensensensesensenses 119
C-68. listPrime DEmMONSIATION 3..iviiviieiiiiieeeiceecteceecreete ettt ettt et ere e eseeseess s ensesseesseseeseessensensensensensenns 119
C-069. lineSegment Demonstration ... sssesssesesnaes 119
C-70. lineSegment DemMONSIAtION Z.....ccciuiiiiiiiiiiiiiciiiiiiieess st 120
C-71. lineSegment DemMONSIAtION 3.....ccciuiiiiiiiriiiiiiiiitcieieeie et 120
C-72. Mask DEMONSTIATION T ..ocviiviieieeiieiiieeieceececteeteceee ettt ettt ereeae e ev e seeseeteereeneeseeseensensensensennas 121
C-73. Mask DEMONSTIAION 2 ..ovivveuierieririerierereeerereereereeereeres et esesessetessessssessessesessessesessessesessessesensersesensenes 121
C-74. mask DEMONSTIATION 3 ..icviiiiiieeieieieeieeteetectee ettt et e stesteeteebe e e eteeteersessensensessesseeseessessessensensensesenss 121
C-75. markovGeneratorAnalysis Demonstration 1 ..o 122
C-76. markovGeneratorAnalysis Demonstration 2 ... 122
C-77. markovGeneratorAnalysis Demonstration 3c.c.ccvrieeeereninininecceerereinneeseeesesesesesesesens 123
C-78. maskReject Demonstration 1 ... 123
C-79. maskReject Demonstration 2 ..ot 124
C-80. maskReject Demonstration 3 ... 124
C-81. maskScale DemMONSIAION 1 ..c.ivviviiiiieierieriieiereeeteeree ettt ettt eteseere e ssereeressessebessessetessersesansenes 125
C-82. markovValue DemoOnStration L......occceciiriierierieeiereeetecteeeteereee et evesseseees e eseeesseseesessesessessesensens 125
C-83. markovValue DemOnStIation 2.......ccocieuieiereereeeeeeeeeteeteere et eteeeeeeeessesensessesseesseseessessesessessessenss 126
C-84. N01Se DEmMONSLIATION T .iiiiiiiiiiiiiiieiecieceeceete et ettt et eereeveereeeveeveetseeteesseesseeseersenseenseessesssesseens 126
C-85. N01S€ DEMONSTIATION 2 ..iuvivieiieeieieieciecieeteetecte ettt ere et estestesteebee e e seeseessessessessessessesseesseseessessessensessenses 127
C-806. n01S€ DEMONSTIATION 3 ..iiiiiiiiieiieieieteeieeecteee ettt ettt et et e et ete e e s ebessesseeteebeesseseessensensensensensas 127
C-87. N01SE IDEMONSTIATION 4 ..ovivieeeeeeeeeeeeereeteeteeteete ettt ettt et et et e e eteeteeseenseseesesseeseeseesseseessensensensensesas 127
C-88. operatorAdd Demonstration L. 128
C-89. operatorCongruence Demonstration 1 ... 128
C-90. operatorDivide Demonstration 1c.ccceieiiieinicniceeesieeeeessse e sessessaesnans 129
C-91. operatorMultiply Demonstration L. 129
C-92. 0neOver DemONSIAtION 1. ..iiiiiiiciiiiieieceeeie ettt ecreere et eeteeaeetseeteesseesseesseersessseseessesssesseens 130
C-93. operatorPower Demonstration 1 ... 130
C-94. operatorSubtract Demonstration L........cccieiienniicecere e neeaes 131
C-95. quantize Demonstration L. ... 132
C-96. quantize Demonstration 2. 132

viii

C-97. quantize Demonstration 3. 132

C-98. randomBeta DemoOnStIatioN L....c.cicveeeriirieericreeeericreeetecteeete ettt eteesereereeeveereeessereesesseresseseesensens 133
C-99. randomBeta DemONSIIAtiON 2......ccvicvieuierieieeeeeeeeeteeeeeteeteete et et ereeeesessessessessesseeseessessensesesensesenss 133
C-100. randomBilateralExponential Demonstration 1 ... 134
C-101. randomBilateralExponential Demonstration 2ccceeuvieiiinieiiinienninieeinieesicensenenenes 134
C-102. randomBilateralExponential Demonstration 3 ..o 134
C-103. randomCauchy Demonstration 1ccceiiiiiiiiiniiiiicciiccce e 135
C-104. randomCauchy Demonstration 2 ..o 135
C-105. randomCauchy Demonstration 3coeeeeeeuereininiiiicieieiereiniseseeecseieseseesssesesesesesesesesesesesens 135
C-106. randomExponential Demonstration ..o 136
C-107. randomExponential Demonstration 2.........cccceueueiviviiiieieininininiicceeesesesiseseeesesesesesens 136
C-108. randomExponential Demonstration 3.........cccoviiiiiiiiiiiesse s 136
C-109. randomGauss DemoOnStration L.....oiccicicieierenieeerieerecreeeeeressereeresseeeresereesesessesessessesessessessasenes 137
C-110. randomGauss DEMONSLIALION 2...viveeeerierireriereeereerieeteereeereeresseseesessessesessessesesessesessessesessessesssenes 137
C-111. randomInverseExponential Demonstration ... 138
C-112. randomInverseExponential Demonstration ... 138
C-113. randomInverseExponential Demonstration 3.........cccvieiviicriiniieiinienninieieesiesseeaenians 138
C-114. randomInverselinear DemonStration Tocccveierivveiireeeeeereeetecreeeeereeeereereseeseereseseesesesseseesenas 139
C-115. randomInverselinear DemONStratiON 2oecvevevveereereereeeeereereeteeeeeeereeseeseereeseeeereessessesesseeseeses 139
C-116. randomInverseTriangular Demonstration 1 ... 140
C-117. randomInverseTriangular Demonstration 2 ... 140
C-118. randomLinear DemMONStIAtiON 1c.ocvcivviieriirieeierieeetecteeeteereee e ee e erereers v s eseerensessessesenes 140
C-119. randomLineatr DemONSIAtION 2 ...c..covievierierierieeeeeereeeeeteeteeteeteereeeeeesseesessessesseeseessessessesensesseesenses 141
C-120. randomTriangular Demonstration 1 ... 141
C-121. randomTriangular DemONStration 2ccoceueiiiininiiininieiiiieiessiieeeeesese s esssssaesenses 142
C-122. randomUniform DemonStration ©.......cocveieveeeerierineeiieeeteereeeeteereeee et eeereeerseresseseerensessessesenes 142
C-123. randomUniform DemONStration 2......cocecuieueeeeeeeeieereeteereereeteeseeseeeesseeseeseesesseeseeseessessessessesseeseeses 142
C-124. randomWeibull Demonstration T........ccicieieieiiiieeeeeceeereereete ettt ereereereereessensesesseereenas 143
C-125. randomWeibull DemONStratiOn 2....c.cicriieriereeeeeriieresreeereeresseseesessesseresseseesessessesessessesessessessesenes 143
C-126. randomWeibull DemoOnStration 3.......cocivveiereeeeeerieeeriereeeereerereeseereseeeeesseseeseseessesessessesessessessesenes 144
C-127. sampleAndHold Demonstration 1 ... 144
C-128. sampleAndHold Demonstration 2 ... 145
C-129. sample AndHold Demonstration 3cccciiiiiiniiniiiiiceieeceeisessssessssssesesssssaesenss 145
C-130. sieveFunnel Demonstration 1c.ccicioieieicieieieeeiecte sttt ettt stesteeveeveessessesesensesseneas 146
C-131. sieveFunnel DemONSIIAtiON 2coveevierieeereeeeeeeeeeeteeteeseeteeteeseeeessessesessessesseessessessessessessessensenses 146
C-132. sieveFunnel DemONStIaAtiOnN 3covciirieriirieeieeeeeeeeteeteereereeseeseeeessessessessesseessessessessensensessensenses 146
C-133. sievelist DemONStIation Tiicicciiiiiieieeceeieieeet ettt e b essessesbesbeesee s essensessensensenss 147
C-134. valuePrime DemoOnStration T....cc ittt ettt ettt et esteetesreebe e s easensensensesennas 148
C-135. valuePrime DemMONSTIATION 2...cuveviereerierieieerieteeeeeeeeeeteeteereereeteeseeseesessesessessesseessessessessesensesensenses 148
C-136. valueSieve DemONSIATION 1 ...ocvivieiiceicriciicieceeeeeee ettt eresaestesteereereessensensensensesennas 149
C-137. valueSieve DemONSIATION 2cveieiieiiiiriereeieeeeiereeeestestestesteeseeeeseesessessessessessesseessessessesesesesseses 149
C-138. valueSieve DemONSIATION 3....ciiiiiiiciierieieeieeeeiete ettt ettt e et ee e et essessesteebeessessensensensensensensas 149
C-139. valueSieve DEmMONSIATION d....c.eovereerierieeeeeeeeeeeete et eeteete et et e e e evessesessessesseeseeseessensesensensensenss 150
C-140. waveCosine Demonstration 1c.icciciiieeiiieiecreceeeie ettt eeveereereeeseesseeaeeteeeseesseesseereesseens 150
C-141. waveCosine DemOnSTIAtION 2c.cciviiviieieeeeeeieieiestesteste e eree e eseesessessessessessesseeseessessensessessesseses 151
C-142. waveCosine DemOnStration 3ccocieuieieerieieieieieetesteeteere e e eeeeessesessessesseeseeseessessensensessensenses 151
C-143. waveHalfPeriodCosine Demonstration ©.......ccccuicveeeeeerieeeieeeeeeeeeveereere e eeereeseeseveeseeseenas 152
C-144. waveHalfPeriodCosine DemONSTIAtion 2.......cueveveeveereeriereeriereereereeeeresseeseeseeseeseessessesensessesseenes 152

x

C-145.
C-140.
C-147.
C-148.
C-149.
C-150.
C-151.
C-152.
C-153.
C-154.
C-155.
C-156.
C-157.
C-158.
C-159.
C-160.
C-161.
C-162.
C-163.
C-1064.
C-165.
C-160.
C-167.
C-168.
C-169.
C-170.
C-171.
C-172.
C-173.
C-174.
C-175.
C-176.
C-177.
C-178.
C-179.
C-180.
C-181.
C-182.
C-183.
C-184.
C-185.
C-180.
C-187.
C-188.
C-189.
C-190.
C-191.
C-192.

waveHalfPeriodPulse Demonstration 1occcieivieierinieeeieieeereeeeeeresseeeseeseseesseseesessessessssenees 153
waveHalfPeriodPulse DemONSLIAtiON 2ocveeveeieriveerieriereeereeereereeeeeeseesesseseeseseessessesessesessesenes 153
waveHalfPeriodPulse DemonSstration 3coceeveiveeieeeeeeeeeereere ettt eve e ereeeeseeseesenas 153
waveHalfPeriodPulse DemONStration 4c.coeeveveevieeeeeeereeeetecteeeeeeevee et ere e essereeseeseesesseeseenes 153
waveHalfPetriodSine Demonstration 1 ...c..iceceiiicieieirinieieereeereeeeereerereereesesesesse e eressessesessenees 154
waveHalfPetriodSine DemMONSLIAtiON 2ciceeveeierieeeieriereeereeeeereseeeeseesesseseesessesessesesessesessesenees 154
waveHalfPeriodSine Demonstration 3ccceeveiveeiierieeeceeeete ettt ettt et ee s ereeaenas 155
waveHalfPeriodSine DemONStIation 4c.ooeceeveveeeieeeeeeeeeteceecteeeeeeeeee et ereere e ere e esesseereenes 155
waveHalfPeriodTriangle Demonstration 1ccccvieiiiiiiiininiiiieiicnceece e 156
waveHalfPeriodTriangle Demonstration 2ccoeeevenierienicininiereinieieeieenseeeeseesesseseeenennes 156
wavePulse DemONSIAtION T ...c.ccviviiiiiiieierieeeeeeeeeeeeeete ettt ettt ettt et ere e eeesensesesennas 157
WaVePulse DEMONSIATION 2...ocvvivieeviiieiicrieteeteeeete ettt ettt ere et ese e s e sesteeseeteessessensensensensensensas 157
wavePulse DemONSIAtiON 3......cciiciiiiiieieieeeieeeteteteste ettt re e et et e st sbeebe e et e se s esesannas 157
wavePowerDown Demonstration T......oiececiiiiieeecieeeeeee ettt e s s v v e 158
wavePowerDown DemoOnStIation Z.. ... ciecieceeieeieceeceeeeeeteesteecteeereeseeeseeseeseesaesseesseesseessesses 158
wavePowerDown DemoOnStration cieiieieeeeeecreeeeereeereeereeereeseeesseseerseesesssesseesseesseenss 158
wavePowerUp Demonstration T ... 159
wavePowerUp Demonstration 2 ... 159
wavePowerUp Demonstration 3 ...t 160
WaveSine DemONSTIATION T ..ottt ettt ere e eteereebeeseesseesseeseeseesseessenseessenssan 160
WaVESINE DEMONSTIATION 2 ..iviiiiiieieiiiitieteereeeereee et etesteste e e eteeteeseesseseessesessessesseessessessessessersessanss 161
WaveSine DemMONSTIATION 3...c.iiiiiiiiiciieieteeeeecteee ettt re et et ere et et e sesteeteersersensensessensesensas 161
WaveSine DEMONSTIATION 4ooviievicreetiereereeee ettt ettt ete e ereereee et eree s e sessesseeseessessensensensensensensas 161
waveSawDown DemoOnStration 1 ...ttt eere et eere v eae e esreereereeneen 162
waveSawWDOWN DemMONSTIATION 2icviiiieiieiieieceieieiecieeesteee et ere et eresse st esesse s e ese e e eaessessessessesas 162
waveSawDoWwn DemoOnStration 3.......cicieieeeieieieieeecteeeeeee ettt st ettt n b sae et enan 162
waveSawUp Demonstration L. 163
waveSawUp Demonstration Z.... .. 163
waveSawUp Demonstration 164
waveTriangle Demonstration T.......cciiiiic s 164
waveTriangle Demonstration 2. ... 165
waveTriangle Demonstration 3. 165
convertSecond DemoOnStration 1.....icicioiiiriieeeiceeereeeeeteeee ettt er et ere v s rs b s erseressenis 166
convertSecondTriple Demonstration 1 ... 167
gaRhythm Demonstration 1 ... 168
iterateRhythmGroup Demonstration 1 ... 169
iterateRhythmHold Demonstration 1 ... sesesesesenes 170
iterateRhythmWindow Demonstration Tcccoevicniniciniiencceeeeeceeseeseeee e 171
1oop DemMONSIation 1cciiuiuiiiiiiiiiiiiiciciiic e 172
markovPulse DemMONSTIATION T ...oiviiiiiiiiiieieceeceeeeeeeeeeet ettt ettt ettt ereereessensensesessennens 173
markovRhythmAnalysis Demonstration ©........ccceeeeinnniicceiiennecceneseesseseeeeenes 174
pulseSieve Demonstration T ... 175
pulseSieve DemoOnStration 2........cciieiiiiiiiniiicceeeesiccce et 175
pulseTriple Demonstration 1 ..o 176
pulseTriple DemMONSTIAtION 2ccviieiiiiiiiiiiiiiiciiiciesice st 177
rhythmSieve Demonstration 1 ... 178
bypass Demonstration L. 179
filter Add DemONSTIAION T c.vooviiuieeieiiiiceeceeeteceeete ettt ettt eae e et eteereereensensensensenserenns 179

C-193.
C-194.
C-195.
C-196.
C-197.
C-198.
C-199.
C-200.
C-201.
C-202.
C-203.
C-204.
C-205.
C-200.
C-207.

filterDivide Demonstration 1c.ccvviiciiireieiniiiccceeieieesse ettt 180
filterDivide Anchotr Demonstration L.ttt 181
filterFunnelBinary Demonstration 1 ... 182
filterFunnelBinary Demonstration 2 ... 182
filterMultiply Demonstration 1 ... 183
filterMultiplyAnchor Demonstration ©........c.ccvcnininicinicecereeseeseeessee s 184
filterPower DemONStration L. ..ottt et neees 184
filterQuantize Demonstration ©.......ooeccieieinininiiiccceeseeee e 185
filterQuantize DemMONSIIAION 2...cviviririereieiiiiiniririsieieieieieieeeests sttt se st sssessseees 186
maskFilter DemonStration ©.....ccvreeeeiinriniriieeeeeetrsstee ettt 186
maskScaleFilter DemONStration ..o eecieeeerieeeieiecriee ettt neas 187
orderBackward Demonstration Tcceeeieeeenieiieeeereeie ettt sans 188
orderRotate DemoONStration 1ccccirririririeieieeeiienrtreeee ettt es 188
pipeline Demonstration T.......ccccciiiiiiiiiiii e 189
replace Demonstration 1. ... 190

X7

Preface

1. Overview of the athenaCL System

The athenaCL system is a software tool for creating musical structures. Music is rendered as a
polyphonic event list, or an EventSequence object. This EventSequence can be converted into
diverse forms, or OutputFormats, including scores for the Csound synthesis language, Musical
Instrument Digital Interface (MIDI) files, and other specialized formats. Within athenaCL,
Orchestra and Instrument models provide control of and integration with diverse OutputFormats.
Orchestra models may include complete specification, at the code level, of external sound sources
that are created in the process of OutputFormat generation.

The athenaCL system features specialized objects for creating and manipulating pitch structures,
including the Pitch, the Multiset (a collection of Pitches), and the Path (a collection of Multisets).
Paths define reusable pitch groups. When used as a compositional resource, a Path is interpreted by
a Texture object (described below).

The athenaCL system features three levels of algorithmic design. The first two levels are provided by
the ParameterObject and the Texture. The ParameterObject is a model of a low-level one-
dimensional parameter generator and transformer. The Texture is a model of a multi-dimensional
generative musical part. A Texture is controlled and configured by numerous embedded
ParameterObjects. Each ParameterObject is assigned to either event parameters, such as amplitude
and rhythm, or Texture configuration parameters. The Texture interprets ParameterObject values to
create EventSequences. The number of ParameterObjects in a Texture, as well as their function and
interaction, is determined by the Texture's parent type (TextureModule) and Instrument model.
Each Texture is an instance of a TextureModule. TextureModules encode diverse approaches to
multi-dimensional algorithmic generation. The TextureModule manages the deployment and
interaction of lower level ParameterObjects, as well as linear or non-linear event generation.
Specialized TextureModules may be designed to create a wide variety of musical structures.

The third layer of algorithmic design is provided by the Clone, a model of the multi-dimensional
transformative part. The Clone transforms EventSequences generated by a Texture. Similar to
Textures, Clones are controlled and configured by numerous embedded ParameterObjects.

Each Texture and Clone creates a collection of Events. Each Event is a rich data representation that
includes detailed timing, pitch, rthythm, and parameter data. Events are stored in EventSequence
objects. The collection all Texture and Clone EventSequences is the complete output of athenaCL.
These EventSequences are transformed into various OutputFormats for compositional deployment.

For general information on computer aided algorithmic composition and generative music systems,
see the resources listed here and in References (Ariza 2005b, 2009a).

The athenaCL system has been under development since June 2000. The software is cross platform,
developed under an open-source license, and programmed in the Python language. An interactive
command-line interface provides an easy-to-use environment for beginners and a quick reference
for advanced users. The complete functionality of the system is alternatively available as a scriptable
batch processor or as a programmable Python extension library.

X7

Preface

2. Getting Started and Advanced Work

To learn the athenaCL system, many basic concepts of the system design and command interface
must be examined in depth. The tutorials included in this document provide an overview to all
essential concepts. Following the tutorials are appendices, providing documentation useful for
reference. Much of this reference documentation is also available from within athenaCL.

All users should read Chapter 1 and Chapter 2 to gain familiarity with the interface and basic
athenaCL concepts. Basic composition tools are covered in Chapter 4, Chapter 5, and Chapter 6.
For more detailed information on organizing pitch structures, see Chapter 3.

Users with experience with Python and/or other generative music systems, or usets who have
mastered the athenaCL interactive command-line interface, will likely want to begin storing
athenaCL command scripts in Python code files. This approach provides a wide range of
opportunities for programmatically extending the power of athenaCL. A common approach for
advanced usage of athenaCL is to use the interactive command-line interface for reference and
sketching, and then store series of commands or command-generating procedures in Python files.
The section Chapter 7 provides basic examples for this approach. Additional, over 30 demonstration
Python scripts are distributed with athenaClL and included in Appendix F.

3. More Information

This document does not offer a complete description of the history, context, and internal structure
of the athenaCL system; such a description, including comparative analysis to related historical and
contemporary systems and detailed explanation of object models and interactions, is provided in the
text An Open Design for Computer-Aided Algorithmic Music Composition: athenaCl. (Ariza 2005a).
Numerous additional articles are available that explore aspects of the athenaCL system in detail
(Ariza 2002, 2003, 2004, 2005¢, 2006, 2007a, 2007b, 2008, 2009b).

4. Conventions Used in This Manual

The following typographical conventions are used throughout this book:

Constant width

Used for athenaCL text output as transcribed in examples. This is what the program displays to the
user.

Constant width bold

Used for user text input as transcribed in examples. This is what the user enters into the program.

Xt

Preface

5. Production of This Manual

The first edition of the athenaCL. Tutorial Mannal was released in August of 2001 and covered
athenaCL versions 1.0 to 1.3. The second edition was released in June 2005 and covers athenaCL

versions 1.4 and beyond. The third edition was released in July 2010 and convers athenaCL versions
2.0.

This manual is constructed and maintained with the help of various open-source tools: DocBook
(http:/ /www.docbook.org), the Modular DocBook Stylesheet distribution
(http://docbook.sourceforge.net/projects/dsssl/), Openjade (http://openjade.sourceforge.net/),
Python (http://www.python.org/), and ImageMagick (http://www.imagemagick.org/).

X7

Chapter 1. Tutorial 1: The Interactive Command Line Interface

This tutorial provides essential information and examples for using athenaCL's interactive
command-line Interpreter. This material is essential for understanding basic athenaCL operation and
how to obtain help within the program.

1.1. Starting the athenaCL Interpreter

Depending on your platform, there are a number of different ways to launch the athenaCL program
and start the athenaCL Interpreter. For all platforms, using athenaCL requires installing (or finding)
Python 2.6 (or better) on your system. Many advanced operating systems (UNIX-based operating
systems including GNU/Linux and MacOS X) ship with Python installed.

For complete instructions on installing and launching athenaCL in each platform, please see the file
"README.txt" included in the athenaCL distribution and in Appendix A.

After launching athenaCL, the user is presented with a text-based display in a terminal or Python-
interactive window. The user is presented with the following initialization information:

Example 1-1. Initialization information

athenaCL 2.0.0 (on darwin via terminal)
Enter "cmd" to see all commands. For help enter "?2".
Enter "c" for copyright, "w" for warranty, "r" for credits.

pi{}ti{} ::

When starting up the Interpreter, athenaCL looks in the athenaCL directory for the "libATH"
folder, and then various ditectories within the "ibATH" folder. These directories contain essential

files and must be present for the program to run. The athenaCL prompt "::" is preceded by
information concerning the AthenaObject. This will be explained in greater detail below.

1.2. Introduction to Commands

When using athenaCL, the user enters commands to get things done. athenaCL. commands are
organized by prefixes, two-letter codes that designate what the command operates upon. Prefixes
are always displayed as capitalized letters, though the user, when entering commands, may use lower-
case letters. Some common prefixes are "PI", for PathInstance, or "T1", for Texturelnstance. What
follows the prefix usually resembles UNIX shell commands: "Is" for listing objects, "rm" for
removing objects. For example, the command to list all the available TextureModules is TMIs: "TM"
for TextureModule, "Is" for list. When no common UNIX command-abbreviation is available,
intuitive short abbreviations are used. For example, the command to create the retrograde of a
Pathlnstance is Plret: "PI" for PathInstance, "ret" for retrograde.

The division of commands into prefixes demonstrates, in part, the large-scale design of the
AthenaObject. The AthenaObject consists of PathInstances and Texturelnstances. PathInstances

Tutorial 1: The Interactive Command Line Interface

are objects that define pitch materials. TextureInstances define algorithmic music layers. Users can
create, copy, edit and store collections of Paths and Textures within the AthenaObject. All Texture
related commands, for example, start with a "T", like TextureTemperament ("TT"),
TextureClone(""TC") and TextureModule ("TM").

In addition to the commands available for working with Paths and Textures, there are commands
for creating various event list formats (such as Csound scores and MIDI files) with the EventList
commands (prefix "EL"). The complete AthenaObject, with all its Paths and Textures, is handled
with AthenaObject commands (prefix "AO"). These commands are used to save and control the
complete collection of Paths and Textures.

1.3. Viewing Command Names

When starting athenaCL, the user is presented with a prompt (::). To display a listing of all

commands enter "cmd", for command:

Example 1-2. Listing all commands

pi{y0}ti{a2} :: cmd

athenaCL Commands:

PathInstance PIn(new) PIcp(copy) PIrm(remove)
PIo(select) PIv(view) PIe(edit)
PIdf (duration) PIls(list) PIh(hear)
PIret(retro) PIrot(rot) PIslc(slice)

TextureModule TMo (select) TMv (view) TM1ls(list)

TextureParameter TPls(list) TPv(select) TPmap (map)
TPe (export)

TextureInstance TIn(new) TIcp(copy) TIrm(remove)
TIo(select) TIv(view) TIe(edit)
TIls(list) TImode (mode) TImute(mute)
TIdoc (doc) TImap (map) TImidi(midi)

TextureClone TCn(new) TCcp(copy) TCrm(remove)
TCo(select) TCv(view) TCe(edit)
TCls(list) TCmute (mute) TCmap (map)

TextureTemperament TTls(list) TTo(select)

TextureEnsemble TEv(view) TEe (edit) TEmap (map)
TEmidi (midi)

EventOutput EOls(list) EOo(select) EOrm(remove)

EventMode EMls(list) EMo(select) EMv (view)
EMi(inst)

EventList ELn(new) ELw(save) ELv(view)
ELh(hear) ELr (render) ELauto(auto)

AthenaPreferences APdir(directory) APea(external) APa(audio)
APgfx(graphics) APcurs (cursor) APdlg(dialogs)
APr (refresh) APwid(width)

AthenaHistory AHls(list) AHexe (execute)

AthenaUtility AUsys (system) AUdoc (docs) AUup (update)
AUbeat (beat) AUpc (pitch) AUmg (markov)
AUma (markov) AUca(automata)

AthenaObject AOw (save) AOl(load) AOmg (merge)

AOrm(remove)

Tutorial 1: The Interactive Command Line Interface

This display, organized by prefix heading, shows each command followed by a longer description of
the commands name.

1.4. Executing Commands

To use a command, simply enter its name. The user will be prompted for all additional information.
For example, type "PIn" (or "pin") at the athenaCL prompt:

Example 1-3. Entering a command

pi{}ti{} :: pin

name this PathInstance: a

enter a pitch set, sieve, spectrum, or set-class: b,c#,g
SC 3-8B as (B4,C#4,G4)? (y, n, or cancel): y
add another set? (y, n, or cancel): n

PI a added to PathInstances.

This command prompts the user for a "pitch set, sieve, spectrum, or set-class" and then creates a
multiset component of a Path. A Xenakis sieve (Xenakis 1990, 1992; Ariza 2004, 2005¢, 2009b) can
be entered using a logical string and a pitch range. Set class labels are given using Forte names. The
user may enter the chord itself as pitch-names (with sharps as "#" and flats as "$") or pitch-classes
(integers that represent the notes of the chromatic scale) (Straus 1990). For instance, the chord D-
major can be represented with the following pitch-name string: (D, F#, A). Or, the same chord can
be represented as a pitch class set: (2,6,9), where 0 is always C, 1=C#, 2=D, ..., 10=A#, and 11=B.
Calling the PIn command to create a new path named "b" with this pitch class set gives us the
following results:

Example 1-4. Entering a command with arguments

pi{a}ti{} :: pin b d,f#,a
PI b added to PathInstances.

Notice that in the above example the Path name and pitch collection arguments are entered at the
same time as the command: "pin b d,f#,a". As an interactive command-line program, athenaCL can
obtain arguments from the user, and can, alternatively, accept space-separated arguments following a
command. Command-line arguments allow advanced users ease and speed and, when called from an
external environment (such as a UNIX shell or Python script), permit advanced scripting
automation. All athenaCL commands can function both with arguments and with interactive
prompts. Command-line arguments, however, are never required: if arguments are absent, the user is
prompted for the necessary details.

Tutorial 1: The Interactive Command Line Interface

1.5. Getting Help for Commands

athenaCL provides two ways of helping the user access and learn commands. If the user only
remembers the prefix of a command, this prefix can be entered at the prompt to produce a list of all
commands associated with that prefix:

Example 1-5. Displaying a command listing

pi{b}ti{} :: pi
PI (PathInstance) commands:

PIn new
PIcp copy
PIrm remove
PIo select
PIv view
PIe edit
PIdf duration
PIls list
PIh hear
PIret retro
PIrot rot
PIslc slice

Help information is available for each command and can be accessed from the athenaCL prompt by
typing either "?" or "help" followed by the name of the command. The following example provides
the documentation for the PIn command. Notice that the main documentation is followed by
"usage" documentation, or the format required for providing command-line arguments:

Example 1-6. Using the help command

pi{b}ti{} :: help pin
{topic,documentation}
PIn PIn: PathInstance: New: Create a new Path from user-

specified pitch groups. Users may specify pitch groups in a
variety of formats. A Forte set class number (6-23A7A), a
pitch-class set (4,3,9), a pitch-space set (-3, 23.2, 14),
standard pitch letter names (A, C##, E~, G#), MIDI note
numbers (58m, 62m), frequency values (222hz, 1403hz), a
Xenakis sieve (5&3|11), or an Audacity frequency-analysis
file (import) all may be provided. Pitches may be specified
by letter name (psName), pitch space (psReal), pitch class,
MIDI note number, or frequency. Pitch letter names may be
specified as follows: a sharp is represented as "#"; a flat
is represented as "$"; a quarter sharp is represented as
"~": multiple sharps, quarter sharps, and flats are valid.
Octave numbers (where middle-C is C4) can be used with pitch
letter names to provide register. Pitch space values (as
well as pitch class) place C4 at 0.0. MIDI note numbers
place C4 at 60. Numerical representations may encode
microtones with additional decimal places. MIDI note-numbers
and frequency values must contain the appropriate unit as a
string ("m" or "hz"). Xenakis sieves are entered using logic
constructions of residual classes. Residual classes are
specified by a modulus and shift, where modulus 3 at shift 1
is notated 3@1l. Logical operations are notated with "&"
(and), "|" (or), """ (symmetric difference), and "-"

usage:

Tutorial 1: The Interactive Command Line Interface

(complementation). Residual classes and logical operators
may be nested and grouped by use of braces ({}).
Complementation can be applied to a single residual class or
a group of residual classes. For example:
-{7@0|{-5@2&-4@3}}. When entering a sieve as a pitch set,
the logic string may be followed by two comma-separated
pitch notations for register bounds. For example "3@2|4, cl,
c4" will take the sieve between cl and c4. Audacity
frequency-analysis files can be produced with the cross-
platform open-source audio editor Audacity. In Audacity,
under menu View, select Plot Spectrum, configure, and
export. The file must have a .txt extension. To use the
file-browser, enter "import"; to select the file from the
prompt, enter the complete file path, optionally followed by
a comma and the number of ranked pitches to read.

pin name setl ... setN

The same help command can be used to access information concerning additional topics, notations,
and representations used within athenaClL.. For example, information about Markov transition
strings can be accessed with the same help command:

Example 1-7. Accessing additional help topics

pi{b}ti{} :: ? markov
{topic,documentation}

Markov Notation

Markov transition strings are entered using symbolic
definitions and incomplete n-order weight specifications.
The complete transition string consists of two parts: symbol
definition and weights. Symbols are defined with alphabetic
variable names, such as "a" or "b"; symbols may be numbers,
strings, or other objects. Key and value pairs are notated
as such: name{symbol}. Weights may be give in integers or
floating point values. All transitions not specified are
assumed to have equal weights. Weights are specified with
key and value pairs notated as such: transition{name=weight
| name=weight}. The ":" character is used as the zero-order
weight key. Higher order weight keys are specified using the
defined variable names separated by ":" characters. Weight
values are given with the variable name followed by an "="
and the desired weight. Multiple weights are separated by
the "|" character. All weights not specified, within a
defined transition, are assumed to be zero. For example, the
following string defines three variable names for the values
.2, 5, and 8 and provides a zero order weight for b at 50%,
a at 25%, and c at 25%: a{.2}b{5}c{8} :{a=1|b=2|c=1}.
N-order weights can be included in a transition string.
Thus, the following string adds first and second order
weights to the same symbol definitions: a{.2}b{5}c{8}
:{a=1|b=2|c=1} a:{c=2|a=1} c:{b=1} a:a:{a=3|b=9}
c:b:{a=2|b=7|c=4}. For greater generality, weight keys may
employ limited single-operator regular expressions within
transitions. Operators permitted are "*" (to match all
names), "-" (to not match a single name), and "|" (to match
any number of names). For example, a:*:{a=3|b=9} will match
"a" followed by any name; a:-b:{a=3|b=9} will match "a
followed by any name that is not "b"; a:b|c:{a=3|b=9} will

match "a" followed by either "b" or "c".

Tutorial 1: The Interactive Command Line Interface

Throughout this document additional information for the reader may be recommended by
suggesting the use of the help command. For example: (enter "help markov" for more information).

1.6. Configuring the User Environment

athenaCL has many configurable settings that are saved in a preference file and loaded for each
athenaCL session. Some of these settings have default values; others will need to be configured the
first time a command is used.

For example, following the athenaCL prompt ("::") is the the athenaCL "cursor tool." This tool,
providing information on the active Texture and Path, can be turned on or off with the command
APcurs, for AthenaPreferences cursor:

Example 1-8. Toggling the athenaCL cursor tool with APcurs

pi{b}ti{} :: apcurs
cursor tool set to off.

:: apcurs
cursor tool set to on.

pi{b}ti{} ::

athenaCL writes files. Some of these files are audio file formats, some are event list formats (scores,
MIDI files), and some are image files. In most cases, athenaCL will write a file in a user specified
"scratch" directory with an automatically-generated file name. This is convenient and fast. To set the
scratch directory, enter the APdir command, for AthenaPreferences directory. (Replace
"/Volumes/xdisc/_scratch" with a complete file path to a suitable directory.)

Example 1-9. Setting the scratch directory with APdir

pi{b}ti{} :: apdir
select directory to set: scratch or audio. (x or a): x
/Users/ariza/_x/src/athenaCL

.cvsignore .DS_Store __init .py __init .pyc __init .pyo
athenacl.py athenacl.pyc athenaObj.py athenaObj.pyc athenaObj.pyo
CvVs demo docs 1ibATH setup.py
tools

select a scratch directory:

to change directory enter name, path, or ".."

cancel or select? (c or s): /volumes/xdisc/_scratch
/Volumes/xdisc/_scratch

.DS_Store a.mid

select a scratch directory:

to change directory enter name, path, or ".."

cancel or select? (c or s): s

user scratch directory set to /Volumes/xdisc/_scratch.

Tutorial 1: The Interactive Command Line Interface

The command Plh, for PathInstance hear, allows the creation of a MIDI file from a single Path
specification. In this case, athenaCL writes the MIDI file in the user-specified scratch directory.
After the file is written, athenaCL opens the file with the operating system. Depending on how the
operating system is configured, the MIDI file should open in an appropriate player. The athenaCL
system frequently works in this manner with the operating system and external programs and
resources.

Example 1-10. Creating a MIDI file with PIh

pi{b}ti{} :: pih

command.py: temporary file: /Volumes/xdisc/_ scratch/ath2010.07.01.16.12.52.xml
PI b hear with TM LineGroove complete.
(/Volumes/xdisc/_scratch/ath2010.07.01.16.12.52.mid)

Numerous types of graphical aids are provided by athenaCL to assist in the representation of
musical materials. Depending on the user's Python installation, numerous formats of graphic files
are available. Formats include text (within the Interpreter display), Encapsulated PostScript
(convertible to PDF), Tk GUI Windows, JPEG, and PNG. Tk requires the Python TkInter GUI
installation; JPEG and PNG require the Python Imaging Library (PIL) installation.

The user can set an active graphic format with the APgfx command. For example:

Example 1-11. Setting the active graphics format with APgfx

pi{b}ti{} :: apgfx

active graphics format: png.

select text, eps, tk, jpg, png. (t, e, k, j, or p): p
graphics format changed to png.

To test the production of graphic output, the TPmap command, for TextureParameter map, can be
used:

Example 1-12. Producing a graphical diagram with TPmap

pi{b}ti{} :: tpmap 100 ru
randomUniform, (constant, 0), (constant, 1)
TPmap display complete.

Tutorial 1: The Interactive Command Line Interface

Chapter 2. Tutorial 2: AthenaObjects and EventModes

This tutorial provides essential information concerning saving and opening an athenaCL session, as
well as basic information for creating and configuring EventLists and EventModes.

2.1. Introduction to AthenaObjects

The AthenaObject stores the collection of user-created Pathlnstances and Texturelnstances, as well
as the names of the active objects and other settings relevant to the active athenaCL session (and not
stored in the user preference file). The AthenaObject, when saved, is stored as an XML file. When
athenaCL creates an XML AthenaObject file, the resulting file contains the complete state of the
active AthenaObject.

2.2. File Dialogs in athenaCL

The athenaCL system supports a variety of styles of file dialogs, or the interface used to obtain and
write files or directories. The default style of file dialog uses a custom text interface that lets the user
browse their file system. Alternatively, all commands that require file or directory paths may be
executed by supplying the complete file path as a command-line argument.

Use of text-base file dialogs, however, may not be convenient for some users. For this reason
athenaCL offers GUI-based graphical file dialogs on platforms and environments that support such
features. On Python installations that have the Tk GUI library TklInter installed, Tk-based file
dialogs are available. On the Macintosh platform (OS9 and OSX) native MacOS file-dialogs are
available. To change they athenaCL dialog style, enter the command APdlg:

Example 2-1. Changing the file dialog style with APdlg

pi{}ti{} :: apdlg

active dialog visual method: text.
select text, tk, or mac. (t, k, or m): t
dialog visual method changed to text.

Note: on some platforms use of GUI windows from inside a text-environment may cause
unexpected results. In some cases, the GUI window may appear behind all other windows, in the
background.

2.3. Loading and Removing an AthenaObject

The command AO], for AthenaObject load, permits the user to load an AthenaObject XML file.
Numerous small demonstration files are included within athenaCL. In the following example, the
user loads the file "demo01.xml".

The following display demonstrates use of the text-based file-dialogs. When using the text-based
interface, the user must select a directory before selecting a file. In the example below, the user

Tutorial 2: AthenaOlbjects and EventModes

enters "demo" to enter the "demo" directory in the athenaCL directory. The user then enter "s" to

select this directory. Next, the user has the option the select a file from this directory, change the
directory, or cancel. The user chooses to select a file with "f". After entering the name of the file
("demoO1.xml") and confirming, the AthenaObject is loaded:

Example 2-2. Loading an AthenaObject with text-based file selection

pi{}ti{} :: aol
select an AthenaObject file:
name file, change directory, or cancel? (f, cd, c): cd
/Volumes/xdisc/_sync/_x/src/athenacl/athenaCL/demo/legacy
.svn __init .py demo01.xml demo03.xml demo05.xml
spectrum0l.txt tutorial02.xml tutorial03.xml tutorialO4.xml tutorialO5.xml
tutorialO06.xml tutorialO7.xml tutorial09.xml
to change directory enter name, path, or ".."
cancel or select? (c or s): s
select an AthenaObject file:
name file, change directory, or cancel? (f, cd, c): £
name file? demoOl.xml

1.3.1 xml AthenaObject loaded (00:01):
/Volumes/xdisc/_sync/_x/src/athenacl/athenaCL/demo/legacy/demo01.xml

To confirm that the AthenaObject has been loaded, the user may enter T1Ils to display a list of all
Texturelnstances. (For more information concerning Textures, see Chapter 4).

Example 2-3. Listing TextureIlnstances with Tils

pi{y0}ti{a2} :: tils
TextureInstances available:
{name, status,TM,PI,instrument,time,TC}

_space + MonophonicOrnament x0 62 39.0--40.0 0
a0 + MonophonicOrnament yo0 50 01.0--41.0 0
al + MonophonicOrnament yO0 50 01.0--41.0 0
+ a2 + MonophonicOrnament yo0 50 01.0--41.0 0

The entire AthenaObject can be erased and set to its initial state without restarting the athenaCL
program. The following example uses AOrm, for AthenaObject remove, to re-initialize the
AthenaObject. Note: the AOrm will permanently remove all objects within athenaCL and cannot be
un-done.

Example 2-4. Reinitializing the AthenaObject with AOrm
pi{y0}ti{a2} :: aorm

destroy the current AthenaObject? (y or n): y
reinitializing AthenaObject.

pi{}ti{} ::

10

Tutorial 2: AthenaOlbjects and EventModes

If the AthenaObject file is located in the athenaCL "demo" directory, or a directory from which a
file was opened or saved-to by the user within the current session, athenaCL can find the file by
giving the AOl command with the file's name as a command-line argument. To reload
"demo01.xml", the user may enter the following arguments:

Example 2-5. Loading an AthenaObject from the command-line

pi{}ti{} :: aol demoOl.xml
1.3.1 xml AthenaObject loaded (00:01):
/Volumes/xdisc/_sync/_x/src/athenacl/athenaCL/demo/legacy/demo01l.xml

2.4. EventModes and EventOutputs

After loading a demonstration file containing Texturelnstances, athenaCL can be used to create an
EventList. As a poly-paradigm system with integrated instrument models, athenaCL supports
numerous formats of EventLists and can work with a wide variety of sound sources, including
Csound and MIDI. What types of EventLists are created depends on two settings within athenaCL:
the EventMode and the EventOutput.

The EventModes configure athenaCL for working with a particular sound source and Orchestra
model, such as the internal Csound orchestra (csoundNative), external Csound orchestras
(csoundExternal), various types of MIDI files (generalMidi an generalMidiPercussion), and others.
The EventMode determines what instruments are available for Texture creation (see Chapter 4, as
well as the operation of some EventList commands. In some cases, the EventMode forces certain
EventOutput formats to be written as well.

The EventOutputs select what file formats will be created when a new EventList is generated.
athenaCL permits the user to create an EventList in numerous formats simultaneously. For example,
a Csound score and orchestra, a MIDI file, and tab-delimited table can all be produced from one call
to the EventList new command. Some EventOutput formats are created only if the AthenaObject
contains Textures created in the appropriate EventMode. Other EventOutput formats can be
created with any Texture in any EventMode. Such conflicts, however, are never a problem:
athenaCL simply creates whatever EventOutput formats are appropriate based on the user-specified
request.

To view the current EventMode, enter EMlIs. To view the current list of selected EventOutputs,
enter EOIs. The following example demonstrates these commands:

Example 2-6. Viewing EventMode and EventOutputs

pi{y0}ti{a2} :: emls
EventMode modes available:
{name}
csoundExternal
+ csoundNative
csoundSilence
midi
midiPercussion
superColliderNative

11

Tutorial 2: AthenaOlbjects and EventModes

pi{y0}ti{a2} :: eols
EventOutput active:
{name}
acToolbox
audioFile
csoundBatch
+ csoundData
csoundOrchestra
csoundScore
+ midiFile
pureDataArray
superColliderTask
textSpace
textTab
+ xmlAthenaObject

To select an additional EventOutput to be requested when a new EventList is created, enter the
command EOo, for EventOutput select. To remove an EventOutput, enter the command EOrm,
for EventOutput remove. In the following example, the user adds a tab-delimited table output
("textTab") and a specialized output file for the AC Toolbox ("acToolbox"). After viewing the
EventOutput list, these EventOutputs are removed. Note: EventOutputs, like many selection in
athenaCL, can be designated using automatic acronym expansion (AAE), the user providing only the
leading character and capitals.

Example 2-7. Adding and Removing EventOutputs

pi{y0}ti{a2} :: eoo tt at
EventOutput formats: midiFile, xmlAthenaObject, csoundData, textTab, acToolbox.

pi{y0}ti{a2} :: eols
EventOutput active:
{name}

+ acToolbox
audioFile
csoundBatch

+ csoundData
csoundOrchestra
csoundScore

+ midiFile
pureDataArray
superColliderTask
textSpace

+ textTab

+ xmlAthenaObject

pi{y0}ti{a2} :: eorm tt at
EventOutput formats: midiFile, xmlAthenaObject, csoundData.

2.5. Creating an EventList

To create an EventList, the command ELn, for EventList new, must be used. This command
generates a new EventList for each Texture and Clone, and writes necessary EventOutput formats.
Each time the ELn command is called, a new musical variant (depending on Texture, Clone, and
ParameterObject specification) is produced. It is possible, even likely, that two EventLists, generated

12

Tutorial 2: AthenaOlbjects and EventModes

from the same AthenaObject file, will not be identical. EventLists, further, are never stored within

an AthenaObject. For this reason, users should be careful to save and preserve produced EventList
files.

When using the ELn command alone, temporary files are created, either in a system-location, or in
the scratch directory selected by the user. The user may also, optionally, name the EventList. The
EventList name is given as a file name (or a complete file path) ending with an ".xml" extension.
Although the ELn command may produce many files, only one file path needs to be provided: all
other EventOutput format file names are derived from this source .xml file path. If EventOutput
xmlAthenaObject is active, an XML AthenaObject file will be written along with whatever user-
specified or EventMode-mandated EventOutput formats are created.

In the example above, the user's EventOutput format specification indicates that midiFile and
xmlAthenaObject are active outputs. The current EventMode, however, is set to csoundNative, and
the Textures of "demoO1.xml", upon examination, were created with csoundNative instruments. For
these reasons, the ELn command, in this case, will produce an .xml AthenaObject file, a Csound
.csd file, a MIDI file (.mid), and a script file for processing the Csound orchestra and score (.bat).
For example:

Example 2-8. Creating a new EventList with Eln

pi{y0}ti{a2} :: eln

EventList ath2010.07.02.13.22.35 complete:
/Volumes/xdisc/_scratch/ath2010.07.02.13.22.35.bat
/Volumes/xdisc/_scratch/ath2010.07.02.13.22.35.csd
/Volumes/xdisc/_scratch/ath2010.07.02.13.22.35.mid
/Volumes/xdisc/_scratch/ath2010.07.02.13.22.35.xml

Csound files require additional processing to hear audio from the results: this will be demonstrated
below. The MIDI file, however, can be listened to immediately with any MIDI file player, such as
QuickTime. To hear the file produced by ELn, enter the command ELh, for EventList hear:

Example 2-9. Opening an EventList with Elh

pi{y0}ti{a2} :: elh
EventList hear initiated: /Volumes/xdisc/_scratch/ath2010.07.02.13.22.35.mid

Depending on operating system configuration, the ELLh command should open the newly-created
MIDI file in a MIDI-file player. Alternatively, the MIDI file can be opened in an application that
supports MIDI files, such as a notation program or sequencer.

The ELn command, as all athenaCL. commands, can be used with command-line arguments. To
create an EventList in a specific directory, simply provide a complete file path following the the ELn
command. (Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable directory.)

13

Tutorial 2: AthenaOlbjects and EventModes

Example 2-10. Creating a new EventList with Eln and command-line arguments

pi{y0}ti{a2} :: eln /Volumes/xdisc/ scratch/test02.xml
EventList test02 complete:
/Volumes/xdisc/_scratch/test02.bat
/Volumes/xdisc/_scratch/test02.csd
/Volumes/xdisc/_scratch/test02.mid
/Volumes/xdisc/_scratch/test02.xml

Using the ELh command to listen to this EventList, the user should identify that although "test01"
and "test02" are closely related, each musical fragment, due to algorithmic variation, has differences.

2.6. Configuring and Using Csound

Although Csound files were created in the above examples, only the resulting MIDI files were
auditioned. To produce audio files with Csound, some additional configuration may be necessary.

To create an audio file with Csound, two files are required: a score (.sco) and an orchestra (.orc);
alternatively, both files can be combined into a single XML file called (within athenaCL) a
csoundData file (.csd). With the csoundNative instruments and EventMode, all necessary Csound
files are created by athenaClL.. To activate csoundData file production, the EventOutput csoundData
must be selected. Alternatively, users can create only a Csound score (with EventModes
csoundExternal or csoundSilence), and apply this score to any desired external Csound orchestra.

The Csound audio rendering software must be installed separately. Csound is an open source, free,
cross platform program available for all major operating systems.

Once configured properly, athenaCL provides commands to control Csound rendering. The user
may be required to provide the location of (file path to) the Csound program; the location of the
Csound program is set with the APea command, or Athena Preferences external applications
command. FEach platform has a different default Csound application specified. Unix: default position
is /usr/local/bin/csound; MacOS X: default Csound is the same as Unix; Windows: users must
select the Csound executable, "winsound.exe," with the APea command. The user can select a
different Csound with the APea command; this selection is stored in the user preferences and is
maintained between athenaCL sessions.

Assuming that the necessary Csound files were created with ELn as demonstrated above, the user
may view the Csound score file created with the command ELv, or EventList view. Depending on
operating system configuration, this command will open the score file with a platform-specific text
reader. Alternatively, the .sco file can be manually selected and opened by the user.

Whenever athenaCL creates Csound files under EventMode csoundNative, a script file (.bat) is
created to automate rendering of the audio file from the Csound score and orchestra (or .csd file).
The script instructs Csound to create an audio file with the same name as the score in the same
directory as the score, orchestra, and batch file.

Prior to writing files with the ELn command, the desired audio file format can be specified from
within athenaCL using the command APa. The user will be prompted to select a file format from

14

Tutorial 2: AthenaOlbjects and EventModes

the options given. Note: the user must set Csound options before executing ELn; otherwise, they
will have no effect until a new EventList is created.

Example 2-11. Changing the Csound audio file format with CPff

pi{y0}ti{a2} :: apa

select format, channels, or rate. (f,c,r): £
current audio file format: aif.

select aif, wav, or sd2. (a, w, or s): a
audio format set to 'aif'.

Assuming correct Csound installation and configuration within athenaCL, the user can enter ELr to
automatically initiate Csound rendering of the last Csound score created with ELn. ELt, using the
operating system, calls the athenaCL-created script. For ELr to function, and thus the ELn-created
script to function, the Csound score and orchestra files (or .csd file) must remain in their original
locations.

Example 2-12. Rendering a Csound score

pi{y0}ti{a2} :: elr
audio rendering initiated: /Volumes/xdisc/_scratch/test02.bat

Alternatively, users can render Csound files created in athenaCL within any Csound application, just
as they would for any other Csound score and orchestra, manually setting file Paths, file formats,
and Csound option flags. See Csound documentation for more information on using Csound.

As demonstrated above with MIDI files, the user can open the Csound-rendered audio file with the
ELh command. This command opens the audio file with a platform-specific media player.

Example 2-13. Opening Csound-generated audio files with ELh

pi{y0}ti{a2} :: elh
EventList hear initiated: /Volumes/xdisc/_scratch/test02.aif
EventList hear initiated: /Volumes/xdisc/_ scratch/test02.mid

To summarize, there are three athenaCL. commands needed to create, render, and hear a Csound
score, and they must be executed in order: ELn, ELr, ELh. To link these three commands, the user
can set a automation preference with the ELauto command. When this option is toggled, the single
command ELn will create an EventList, render it in Csound, and open the Csound-created audio file
with a platform-specific media player.

2.7. Saving and Merging AthenaObjects

Loading a new AthenaObject will completely replace the current AthenaObject contents. For this
reason, users should always save their work before loading a new AthenaObject. The user can,

15

Tutorial 2: AthenaOlbjects and EventModes

alternatively, merge AthenaObjects. Merging is a powerful tool: the user can combine many
AthenaObjects that have been saved separately, or combine an AthenaObject numerous times with
itself. In the example below, the user merges "demo01.xml"; loaded above, with another of the same
AthenaObject "demo01.xml". The file paths for athenaCL demonstration files are known to
athenaCL, and thus the user can simply provide the name of the demonstration file as a command-
line argument.

Example 2-14. Merging AthenaObjects with AOmg

pi{y0}ti{a2} :: aomg demoOl.xml
1.3.1 xml AthenaObject merged (00:01):
/Volumes/xdisc/_sync/_x/src/athenacl/athenaCL/demo/legacy/demo01.xml

pi{yo0}ti{a2} ::

The command T1ls can be used to confirm that the AthenaObjects have been merged. The AOmg
command, in the case that two Paths or Textures have the same name, automatically alters the name
by appending an underscore ("_"). In the case where an AthenaObject is merged with itself as in this
example, each Texture and Path is duplicated.

Example 2-15. Listing TextureInstances

pi{y0}ti{a2} :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}

_space + MonophonicOrnament x0 62 39.0--40.0 0
_space__ + MonophonicOrnament x0 62 39.0--40.0 0
a0 + MonophonicOrnament yO0 50 01.0--41.0 0
a0 _ + MonophonicOrnament y0 50 01.0--41.0 0
al + MonophonicOrnament yO0 50 01.0--41.0 0
al + MonophonicOrnament y0 50 01.0--41.0 0
+ a2 + MonophonicOrnament yo0 50 01.0--41.0 0
a2_ + MonophonicOrnament yO0_ 50 01.0--41.0 0

As shown above, the user may create a new MIDI or Csound EventList of this new AthenaObject
and audition the results. As should be clear, the resulting musical structure will sound more dense
due to the additional Textures. Due to algorithmic variation, each Texture will remain relatively
independent.

To save the current AthenaObject, the user may create an XML AthenaObject file. Although
AthenaObject files may be created with the proper EventOutput selection and by use of the ELn
command, in same cases the user my want to create the XML AthenaObject file alone. The
command AOw, for AthenaObject Write, provides this functionality. The user must name the
AthenaObject with a ".xml" extension. In the example below the user saves the merged files as a
new AthenaObject named "merged.xml" using a command-line argument. If desired, the AOw
command can be used without command-line arguments to select the location of the file with an
interactive file dialog. (Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable
directory.)

16

Tutorial 2: AthenaOlbjects and EventModes

Example 2-16. Creating a new AthenaObject with AOw

pi{y0}ti{a2} :: aow /Volumes/xdisc/_ scratch/merged.xml
AthenaObject saved:
/Volumes/xdisc/_scratch/merged.xml

Saving your work in athenaCL is very important, and should be done often. The athenaCL system
can not reconstruct an AthenaObject from an EventList or an audio file; an athenaCL session can
only be reconstructed by loading an AthenaObject XML file.

17

Chapter 3. Tutorial 3: Creating and Editing Paths

This tutorial demonstrates the basic features of the Path, including creating, storing, examining, and
editing Paths.

3.1. Introduction to Paths

A PathInstance (or a Path or PI) is an ordered collection of pitch groups. A pitch group, or a
Multiset, is the simultaneous representation of pitch-space, pitch-class space, and set-class
information for a collection of microtonally-specified pitches. This collection can be treated as an
ordered or unordered collection, can be edited by transposition, replacement, or serial re-ordering,
and can be used by one or more Textures to provide pitch materials that are then independently
transposed and interpreted by the Texture and its ParameterObjects.

A Pathlnstance allows the representation of ordered content groups, and presents this
representation as a multifaceted object. Paths can be of any length, from one to many Multisets long.
A Multiset can be specified in terms of pitch class (excluding octave information with integers from
0 to 11), or in terms of pitch-space (including octave information with integers below 0 or above 11,
or with register-specific note names such as C3 and G#12). A Multiset can also be specified as a
group, set, or scale sequence such as a Forte set-class (Forte 1973) or a Xenakis sieve (Ariza 2005¢).
Finally, Multisets can be derived from spectrums and frequency analysis information provided from
the cross-platform audio editor Audacity (enter "help audacity" for more information).

A Path can be developed as a network of intervallic and motivic associations. The interpretation of a
Path by a Texture provides access to diverse pitch representations for a variety of musical contexts,
and permits numerous Textures to share identical or related pitch information. The use of a Path in
a Texture, however, is optional: a Path can function, at a minimum, simply as a referential point in
Pitch space from which subsequent Texture transpositions are referenced.

3.2. Creating, Selecting, and Viewing Pathinstances

To create a Pathlnstance, enter PIn (for PathInstance new) at the athenaCL prompt. You must
name the new Path, and then supply a pitch group, Forte-number, Xenakis sieve, or alternative pitch
representation (enter "help pitch" for more information on pitch representations).

Example 3-1. Creating a new PathInstance with PIn

pi{}ti{} :: pin

name this PathInstance: pathA

enter a pitch set, sieve, spectrum, or set-class: e$, e, c#
SC 3-2B as (D#4,E4,C#4)? (y, n, or cancel): y
add another set? (y, n, or cancel): y

enter a pitch set, sieve, spectrum, or set-class: 0,1,6,7
SC 4-9 as (C4,C#4,F#4,G4)? (y, n, or cancel): y
add another set? (y, n, or cancel): y

enter a pitch set, sieve, spectrum, or set-class: 3-11
SC 3-11A as (C4,D#4,G4)? (y, n, or cancel): y
add another set? (y, n, or cancel): y

18

Tutorial 3: Creating and Editing Paths

enter a pitch set, sieve, spectrum, or set-class: 7@3|6€4, g2, c4
SC 4-6 as (A#2,B2,F3,B3,C4)? (y, n, or cancel): y
add another set? (y, n, or cancel): n

PI pathA added to PathInstances.

pi{pathA}ti{} ::

Note that after successfully creating a Path, the athenaCL cursor tool changes to reflect the active
Path: the name in parenthesis following "pi" designates the active Path ("pathA"). The same
information is provided for a Texturelnstance following the "ti" prefix. To view the active PI, enter
Plv at the athenaCL prompt:

Example 3-2. Viewing a Path with PIv

pi{pathA}ti{} :: piv

PI: pathA

psPath 3,4,1 0,1,6,7 0,3,7 -14,-13,-7,-1,0
D#4 ,E4,C#4 C4,C#4,F#4,G4 C4,D#4,G4 A#2,B2,F3,B3,C4

pcsPath 3,4,1 0,1,6,7 0,3,7 10,11,5,11,0

scPath 3-2B 4-9 3-11A 4-6

durFraction 1(25%) 1(25%) 1(25%) 1(25%)

TI References: none.

This display provides all essential information about a Path. The header contains the name of the
Path ("pathA"). The parallel presentation of psPath, pcsPath, and scPath illustrates the simultaneous
availability of pitch space, pitch class space, and set class representations. The label "TT references",
when needed, provides information on which Texturelnstances link to this PathInstance.

In order to hear a possible interpretation of this Path, the command Plh generates a MIDI file based
on a simple interpretation of the Path with the active TextureModule. The resulting musical
structure is only provided to audition the Path, and uses default values for all musical parameters.
The MIDI file is written in the user-specified scratch directory (see Example 1-9) and is opened via
the operating system.

Example 3-3. Creating a MIDI file with PIh

pi{pathA}ti{} :: pih
PI pathA hear with TM LineGroove complete.
(/Volumes/xdisc/_ scratch/ath2010.07.02.16.29.39.mid)

A second Path can be created exclusively with Forte set class numbers. In this example, all
arguments are provided via the command line:

Example 3-4. Creating a Path with Forte numbers

pi{pathA}ti{} :: pin pathB 5-3 6-4 7-34 4-14
PI pathB added to PathInstances.

19

Tutorial 3: Creating and Editing Paths

A newly-created Path always becomes the active Path. Entering PIv will display the details of the
newly created Path:

Example 3-5. Displaying a Path

pi{pathB}ti{} :: piv

PI: pathB
psPath 0,1,2,4,5 0,1,2,4,5,6 0,1,3,4,6,8,10
C4,C#4,D4,E4,F4 C4,C#4,D4,E4,F4,F#4 C4,C#4,D#4,E4,F#4,G#4,
pcsPath 0,1,2,4,5 0,1,2,4,5,6 0,1,3,4,6,8,10
scPath 5-3A 6-4 7-34
durFraction 1(25%) 1(25%) 1(25%)
0,2,3,7
A#4 C4,D4,D#4,G4
0,2,3,7
4-14A
1(25%)

TI References: none.

As is clear from the Plv display above, when a Multiset in a Path is entered as a Set class, a pitch
space and a pitch class space representation (psPath, pcsPath) are created from the normal-form of
the desired SetClass.

In order to display the complete collection of Paths available in the AthenaObject, the user enters
Plls, for Pathlnstance list:

Example 3-6. Listing Paths

pi{pathB}ti{} :: pils
PathInstances available:
{name,TIrefs,scPath}
pathA 0 3-2B,4-9,3-11A,4-6
+ pathB 0 5-3A,6-4,7-34,4-14A

Many displays provided by athenaCL are given in columns of data. After whatever header
information is give, a key, in braces ("{}"), is provided to define the data provided in each column.
In the example above, the key shows that each row contains the name of the PI, the number of TI
references, the number of PathVoices, and an scPath representation of the Path. The "+" next to
"pathB" illustrates that this PI is currently active. All "Is" commands use a similar designation.

Many commands in athenaCL function by using an "active" object. The active PI defines which
Path is used in many different commands. For example, the PIv command, when used without an
argument for which Path to display, displays the active Path.

To select a different PI as the active PI, simply enter Plo. The user is prompted to either enter the
name of the Path to select, or its order number from the "Is" view (where 1 is pathA, 2 is pathB).
Displaying the list of all PathInstances will confirm that pathA is now the selected PI

20

Tutorial 3: Creating and Editing Paths

Example 3-7. Selecting Paths

pi{pathB}ti{} :: pio
select a path to activate: (name or number 1-2): pathA
PI pathA now active.

pi{pathA}ti{} :: pils
PathInstances available:
{name,TIrefs,scPath}
+ pathA 0 3-2B,4-9,3-11A,4-6
pathB 0 5-3A,6-4,7-34,4-14A

Alternatively the user can enter the name of the Path to be selected as a command-line argument
with the Plo command. After making pathA active, the user can make pathB active again by
entering the following:

Example 3-8. Selecting a Path with an argument

pi{pathA}ti{} :: pio pathB
PI pathB now active.

3.3. Copying and Removing Pathinstances

In order to manage the collection of Paths in the AthenaObject, the user can copy and remove
Paths. In all cases of copying and removing user-defined objects in athenaCL, the active object is
never assumed to be the object that the command should be performed upon. Said another way, the
user must always specify which object(s) to copy or remove.

To copy a Path instance, enter PIcp and select a Path to copy:

Example 3-9. Copying a Path with PIcp

pi{pathB}ti{} :: picp

select a path to copy: (name or number 1-2): pathB
name the copy of path pathB: pathC

PI pathC added to PathInstances.

pi{pathC}ti{} :: pils
PathInstances available:
{name, TIrefs,scPath}

patha 0 3-2B,4-9,3-11A,4-6
pathB 0 5-3A,6-4,7-34,4-14A
+ pathC 0 5-37,6-4,7-34,4-14A

To delete a Path, enter PIrm and select a Path to delete as above. In the example below, the Path to
delete is given with a command line argument:

Example 3-10. Removing a Path with PIrm

pi{pathC}ti{} :: pirm pathB

21

Tutorial 3: Creating and Editing Paths

PI pathB destroyed.

3.4. Editing PathInstances

A Path can be edited as a serial succession of Multisets with the standard assortment of serial
operations: retrograde, rotation, and slice. Additionally, each Multiset in a Path can be changed,
either by transposition or replacement.

Whenever a serial edit is performed on a Path, the edited Path becomes a new, distinct Path and the
original Path is left unchanged. For example, to create the retrograde of the active Path, enter Plret.
The user must provide the name of the new Path:

Example 3-11. Creating a retrograde of a Path with Plret

pi{pathC}ti{} :: piret
name this PathInstance: pathCret
retrograde PI pathCret added to PathInstances.

pi{pathCret}ti{} :: pils
PathInstances available:
{name,TIrefs,scPath}

pathA 0 3-2B,4-9,3-11A,4-6
pathC 0 5-3A,6-4,7-34,4-14A
+ pathCret 0 4-14A,7-34,6-4,5-3A

To create a rotation, the user, after entering PIrot, must enter the number of the Multiset to occupy
the new first position. If the new first position is to be the second Multiset, the user would enter 2:

Example 3-12. Creating a rotation of a Path with PlIrot

pi{pathCret}ti{} :: pirot

name this PathInstance: pathCretRot

which chord should start the rotation? (positions 2-4): 2
rotation PI pathCretRot added to PathInstances.

pi{pathCretRot}ti{} :: pils
PathInstances available:
{name,TIrefs,scPath}

pathA 0 3-2B,4-9,3-11A,4-6

pathC 0 5-3A,6-4,7-34,4-14A

pathCret 0 4-14A,7-34,6-4,5-3A
+ pathCretRot 0 7-34,6-4,5-3A,4-14A

A slice will extract a segment from a Path. To create a slice, enter Plslc. The user is prompted for
the name of the new Path, and the start and end Multiset positions. If the slice is to only contain the
last two chords of a four chord Path, for example, the start and end positions would be 3,4:

Example 3-13. Creating a slice of a Path with PIslc

pi{pathCretRot}ti{} :: pislc

22

Tutorial 3: Creating and Editing Paths

name this slice of path pathCretRot: pathD
which chords should bound the slice? (positions 1 - 4): 3,4
slice PI pathD added to PathInstances.

pi{pathD}ti{} :: pils
PathInstances available:
{name,TIrefs,scPath}

pathA 0 3-2B,4-9,3-11A,4-6

pathC 0 5-3A,6-4,7-34,4-14A

pathCret 0 4-14A,7-34,6-4,5-3A

pathCretRot 0 7-34,6-4,5-3A,4-14A
+ pathD 0 5-3A,4-14A

There are three ways to edit a single Multiset within a Path using the Ple command: by replacement,
by transposition, or by inversion. In all cases, the number of elements in the Multiset must be
maintained.

To edit a single Multiset in a Path enter Ple:

Example 3-14. Transposing a set within a Path

pi{pathD}ti{} :: pie

edit PI pathD

enter position to edit (positions 1-2): 2

replace, transpose, or invert set (0,2,3,7): (r, t, or i): t
enter a transposition method: literal or modulus? (1 or m): 1
enter a positive or negative transposition: 8

PI pathD edited.

pi{pathD}ti{} :: piv

PI: pathD

psPath 0,1,2,4,5 8,10,11,15
C4,C#4,D4,E4,F4 G#4 ,A#4,B4,D#5

pcsPath 0,1,2,4,5 8,10,11,3

scPath 5-3A 4-14A

durFraction 1(50%) 1(50%)

TI References: none.

Here the user has selected the Multiset in position "2" of PI "pathD" to edit. The user next selects
to edit the set by transposition, entering "t". There are two methods of transposition available: a
"literal" transposition is done in pitch space, creating a new set in the range of all positive and
negative integers; a "modulus"” transposition is done in pitch-class space, creating a new set in the
range of pitch-classes 0 through 11. In the example above the user has selected a literal ("1")
transposition and enters "8" as the transposition value. This shifts each pitch in the Multiset up 8
half-steps. Since this is a literal and not a modulus transposition, pitch 5 becomes pitch 15, or D#5.

Any Multiset in a Path can be replaced with a Multiset of equal size. For example, the same Multiset

edited above can be replaced with any four-element Multiset:

Example 3-15. Replacing a Multiset with a new Multiset

pi{pathD}ti{} :: pie
edit PI pathD

23

Tutorial 3: Creating and Editing Paths

enter position to edit (positions 1-2): 2
replace, transpose, or invert set (8,10,11,15): (r, t, or i): r
enter a pitch set, sieve, spectrum, or set-class: 2,2,4,4
SC 2-2 as (D4,D4,E4,E4)? (y, n, or cancel): y
PI pathD edited.

pi{pathD}ti{} :: piv

PI: pathD

psPath 0,1,2,4,5 2,2,4,4
C4,C#4,D4,E4,F4 D4,D4,E4,E4

pcsPath 0,1,2,4,5 2,2,4,4

scPath 5-3A 2-2

durFraction 1(50%) 1(50%)

TI References: none.

24

Chapter 4. Tutorial 4: Creating and Editing Textures

This tutorial demonstrates basic Texture creation, configuration, and deployment in musical
structures. This chapter is essential for using athenaCL for algorithmic music production.

4.1. Introduction to Textures and ParameterObjects

A Texturelnstance (or a Texture or TI) is an algorithmic music layer. Like a track or a part, a
Texture represents a single musical line somewhat analogous to the role of a single instrument in an
ensemble. The music of a Texture need not be a single monophonic line: it may consist of chords
and melody, multiple independent lines, or any combination or mixture. The general generative
shape and potential of a Texture is defined by the TextureModule. A Texture is an instance of a
TextureModule: a single TextureModule type can be used to create many independent instances of
that type; each of these instances can be customized and edited independently. Collections of
Texturelnstances are used to create an EventList, or the musical output of all Textures.

A Texturelnstance consists of many configurable slots, or attributes. These attributes allow the user
to customize each Texture. Attributes include such properties as timbre (instrument and parametric
timbre specifications), rhythm (duration and tempo), frequency materials (Path, transposition, and
octave position), and mixing (amplitude and panning). Other attributes may control particular
features of the Texture, like the number of voices, position of chords, or formal properties.

Most attributes of a Texturelnstance are not fixed values. Unlike a track or a part, a Texture often
does not have a fixed sequence of values for attributes like amplitude, or even fixed note-sequences.
Rather, attributes of a Texture are algorithmic objects, or ParameterObjects. Rather than enter a
value for amplitude, the user chooses a ParameterObject to produce values for the desired attribute
and enters settings to specialize the ParameterObject's behavior. Rather than enter note-sequences,
the Texture selects and combines pitches from a Path, or a user-supplied sequence of pitch groups.
In this way each attribute of a Texture can be given a range of motion and a degree of indeterminacy
within user-composed boundaries.

b

A Texturelnstance is not a fixed entity: it is a collection of instructions on how to create events for a
certain duration. Every time an EventList is created, each Texture is "performed," or called into
motion to produce events. Depending on the TextureModule and the Texture's configuration, the
events produced may be different each time the EventList is created.

athenaCL is designed to allow users work with broad outlines of musical parameters and materials,
and from this higher level organize and control combinations of Textures. This should not be
confused with a much higher level of algorithmic composition, where an algorithm is responsible for
creating an entire composition: its style, form, parts, and surface. athenaCL is unlikely to produce
such "complete" musical structutres. Rather, athenaCL is designed to produce complex, detailed, and
diverse musical structures and surfaces. Combinations of parts and construction of form are left to
the user, and can be composed either in athenaCL or in a Digital Audio Workstation where
athenaCL EventOutput formats, such as MIDI files or Csound-rendered audio files, can be mixed,
processed, and combined in whatever desired fashion. Alternatively, MIDI files produced with
athenaCL can be modified or combined in traditional sequencers and notation editors.

25

Tutorial 4: Creating and Editing Textures

4.2. Introduction Instrument Models

athenaCL features numerous integrated instrument models. In some cases these instrument models
are references to external specifications; in other cases these instrument models contain complete
source code necessary for instantiating synthesis systems. Textures are assigned an instrument from
an Orchestra upon creation, and are able to control a wide variety of instrument-specific parameters.

athenaCL features an integrated library of Csound instruments, providing automated control of both
Csound score and orchestra generation and control. For details on installing and using Csound
within athenaClL, see Section 2.6. Csound instruments are signal processing and synthesis
instructions. These instructions designates a certain number of parameters to expose to the user of
the instrument. These parameters allow events in the score to communicate information and settings
to the instrument. athenaCL's integrated library of Csound instruments permits dynamically
constructed orchestra files to be used with athenaCL-generated Csound scores. Alternatively, users
can use external, custom orchestras with athenaClL-written score files. EventModes csoundNative,
csoundExternal, and csoundSilence support diverse ways of working with Csound within athenaCL.

athenaCL provides instrument collections (Orchestras) for working with other EventOutput
formats. For working with MIDI systems, General MIDI (GM) instrument definitions are provided
with the generalMidi and generalMidiPercussion EventModes.

Whenever a Texture is created, an instrument must be specified by number. This is necessary
because the Texture must be configured with additional ParameterObjects for instrument-specific
parameter control. Instruments are always identified by a number, though within athenaCL
descriptive names are provided when available.

The instruments available during Texture creation are dependent on the active EventMode: that is,
for any active EventMode, one Otrchestra is available from which a Texture's instrument must be
selected. In the following example, the user lists available EventModes to check that csoundNative
is active, and then views the available instruments with the EMi command.

Example 4-1. Listing available Instruments with EMi

pi{}ti{} :: emls
EventMode modes available:
{name}
csoundExternal
+ csoundNative
csoundSilence
midi
midiPercussion
superColliderNative

pi{}ti{} :: emi
csoundNative instruments:
{number,name}

3 sineDrone

4 sineUnitEnvelope
5 sawDrone

6 sawUnitEnvelope
11 noiseWhite

12 noisePitched

13 noiseUnitEnvelope

26

14 noiseTambourine

15 noiseUnitEnvelopeBandpass

16 noiseSahNoiseUnitEnvelope

17 noiseSahNoiseUnitEnvelopeDistort
20 fmBasic

21 fmClarinet

22 fmWoodDrum

23 fmString

30 samplerReverb

31 samplerRaw

32 samplerUnitEnvelope

33 samplerUnitEnvelopeBandpass

34 samplerUnitEnvelopeDistort

35 samplerUnitEnvelopeParametric
36 samplerSahNoiseUnitEnvelope

40 vocodeNoiseSingle

41 vocodeNoiseSingleGlissando

42 vocodeNoiseQuadRemap

43 vocodeNoiseQuadScale

44 vocodeNoiseQuadScaleRemap

45 vocodeNoiseOctScale

46 vocodeNoiseOctScaleRemap

47 vocodeNoiseBiOctScale

48 vocodeNoiseTriOctScale

50 guitarNylonNormal

51 guitarNylonLegato

52 guitarNylonHarmonic

60 additiveBellBright

61 additiveBellDark

62 additiveBellClear

70 synthRezzy

71 synthWaveformvibrato

72 synthVcoAudioEnvelopeSineQuad
73 synthVcoAudioEnvelopeSquareQuad
74 synthVcoDistort

80 pluckTamHats

81 pluckFormant

82 pluckUnitEnvelope

110 noiseAudioEnvelopeSineQuad

111 noiseAudioEnvelopeSquareQuad
130 samplerAudioEnvelopeSineQuad
131 samplerAudioEnvelopeSquareQuad
132 samplerAudioFileEnvelopeFilter
133 samplerAudioFileEnvelopeFollow
140 vocodeSineOctScale

141 vocodeSineOctScaleRemap

142 vocodeSineBiOctScale

143 vocodeSineTriOctScale

144 vocodeSineQuadOctScale

145 vocodeSinePentOctScale

146 vocodeSineHexOctScale

230 samplerVarispeed

231 samplerVarispeedAudioSine

232 samplerVarispeedReverb

233 samplerVarispeedDistort

234 samplerVarispeedSahNoiseDistort
240 vocodeVcoOctScale

241 vocodeVcoOctScaleRemap

Tutorial 4: Creating and Editing Textures

Other EventModes provide other Orchestras for use in Textures. In the example below, the user
selects the EventMode midiPercussion with the EMo command and examines the available

instruments with the EMi command:

27

Tutorial 4

Example 4-2. Examining additional Instruments with EMi

pi{}ti{} :: emo mp
EventMode mode set to:

pi{}ti{} :: emi

midiPercussion.

generalMidiPercussion instruments:

{number,name}

35 acousticBassDrum
36 bassDruml

37 sideStick

38 acousticSnare
39 handClap

40 electricSnare
41 lowFloorTom
42 closedHiHat
43 highFloorTom
44 pedalHiHat
45 lowTom

46 openHiHat

47 lowMidTom

48 hiMidTom

49 crashCymball
50 highTom

51 rideCymball
52 chineseCymbal
53 rideBell

54 tambourine
55 splashCymbal
56 cowBell

57 crashCymbal2
58 vibraSlap

59 rideCymbal2
60 hiBongo

61 lowBongo

62 muteHiConga
63 openHiConga
64 lowConga

65 highTimbale
66 lowTimbale
67 highAgogo

68 lowAgogo

69 cabasa

70 maracas

71 shortWhistle
72 longWhistle
73 shortGuiro
74 longGuiro

75 claves

76 hiWoodBlock
77 lowWoodBlock
78 muteCuica

79 openCuica

80 muteTriangle
81 openTriangle

4.3. Selecting and Viewing TextureModules

: Creating and Editing Textures

A Texture is an instance of a TextureModule. Every time a Texture is created, athenaCL creates an
independent instance of the active TextureModule. To display a complete list of all available
TextureModules, enter the command TMIs:

28

Tutorial 4: Creating and Editing Textures

Example 4-3. Listing TextureModules with TMIs

pi{}ti{} :: tmls

TextureModules available:

{name,TIreferences}
DroneArticulate
DroneSustain
HarmonicAssembly
HarmonicShuffle
InterpolateFill
InterpolateLine
IntervalExpansion
LineCluster

+ LineGroove
LiteralHorizontal
LiteralvVertical
MonophonicOrnament
TimeFill
TimeSegment

[=NeNeNeNeNelNeNeNoNoNo No o Nl

As in other athenaCL displays, the first line of the display is a key, telling the user that the list
consists of a name followed by the number of TT references. This number displays the count of
Texturelnstances referenced from a parent TextureModule. The "+" designates the active
TextureModule. When creating a new Texturelnstance, athenaCL uses the active TextureModule.

To select a different TextureModule, the user enters TMo. The user is prompted to enter the name
or number (as represented in the list order) of the desired TextureModule. The TMIs command can
be used to confirm the change.

Example 4-4. Selecting the active TextureModule with TMo

pi{}ti{} :: tmo
which TextureModule to activate? (name or number 1-14): da
TextureModule DroneArticulate now active.

pi{}ti{} :: tmls
TextureModules available:
{name,TIreferences}

+ DroneArticulate
DroneSustain
HarmonicAssembly
HarmonicShuffle
InterpolateFill
InterpolateLine
IntervalExpansion
LineCluster
LineGroove
LiteralHorizontal
LiteralVertical
MonophonicOrnament
TimeFill
TimeSegment

[=NeNeNeoleNeoNoNoNoNeNeNolNoNo)

Here the user has entered "da", to select the TextureModule DroneArticulate. Whenever selecting
objects in athenaCL the user may enter the acronym (formed from the leading character and all

29

Tutorial 4: Creating and Editing Textures

following capitals), the literal name ("dronearticulate"), or the ordinal number as displayed in the
corresponding list display.

To learn what a particular TextureModule does, as well what types of Texture options are available,
enter the command TMyv, for TextureModule View. In this example, the user, with Tlo, selects the
TextureModule "LineGroove" (with a command-line argument) before entering the TMv command.

Example 4-5. Viewing details of the active TextureModule

pi{}ti{} :: tmo linegroove
TextureModule LineGroove now active.

pi{}ti{} :: tmv

TextureModule: LineGroove; author: athenaCL native

This TextureModule performs each set of a Path as a simple monophonic line;

pitches are chosen from sets in the Path based on the pitch selector control.

texture (s)tatic

parallelMotionList Description: List is a collection of transpositions
created above every Texture-generated base note. The
timeDelay value determines the amount of time in seconds
between each successive transposition in the
transpositionList. Arguments: (1) name, (2)
transpositionList, (3) timeDelay

pitchSelectorControl Description: Define the selector method of Path pitch
selection used by a Texture. Arguments: (1) name, (2)
selectionString {'randomChoice', 'randomWalk',
'randomPermutate', 'orderedCyclic',
'orderedCyclicRetrograde', 'orderedOscillate'}

levelFieldMonophonic Description: Toggle between selection of local field
(transposition) values per set of the Texture Path, or per
event. Arguments: (1) name, (2) level {'set', 'event'}

levelOctaveMonophonic Description: Toggle between selection of local octave
(transposition) values per set of the Texture Path, or per
event. Arguments: (1) name, (2) level {'set', 'event'}

texture (d)ynamic

The TMv command displays the name of the TextureModule along with the author of its code.
Following the author designation is a description of how the module performs. Following this is
documentation for all TextureStatic parameter objects, or Texture-specific options and user-
configurable settings pertinent to the particular TextureModule's algorithmic design.

4.4. Creating, Selecting, and Viewing Texturelnstances

A Texturelnstance is always linked to a Path. If no Paths exists when the Texture is created, a
default Path is automatically created consisting of a single Multiset with a single pitch (middle C, or
C4). If Paths exists when the Texture is created, the active PathInstance is assigned to the Texture. A
Texturelnstance's Path can be later edited. For a complete introduction to Paths see Chapter 3.

A new Texturelnstance is always created from the active TextureModule; the user must then always

select the desired TextureModule before creating a Texture of the desired type. A Texturelnstance's
type, or TextureModule, cannot be changed after the Texture is created.

30

Tutorial 4: Creating and Editing Textures

A new Texture is created with the TIn command, for Texturelnstance New. The user is prompted
to name the new Texture and select an instrument by number. If the number of the desired
instrument is not known, a "?" can be entered to display a list of instruments. In the example below
the user selects TextureMode LineGroove, EventMode midiPercussion, and then creates a texture
named "al" with instrument 64 ("lowConga").

Example 4-6. Creating a new TextureIlnstance with TIn

pi{}ti{} :: tmo linegroove
TextureModule LineGroove now active.

pi{}ti{} :: emo mp
EventMode mode set to: midiPercussion.

pi{}ti{} :: tin

name this texture: al

enter instrument number:
(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,6
1,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)

or "?" for instrument help: 64

TI al created.

To hear the resulting musical structure, enter the command ELn. (For more information on using
ELn, see Section 2.5. The resulting MIDI file may be opened with the ELh command.

Example 4-7. Creating a new EventList with ELn

pi{auto-lowConga}ti{al} :: eln

command.py: temporary file: /Volumes/xdisc/_scratch/ath2010.07.02.17.51.42.xml
EventList ath2010.07.02.17.51.42 complete:

/Volumes/xdisc/_scratch/ath2010.07.02.17.51.42.mid

/Volumes/xdisc/_scratch/ath2010.07.02.17.51.42.xml

After creating a Texture, the TIv command can be used to view the active Texture:

Example 4-8. Viewing a TextureInstance

pi{auto-lowConga}ti{al} :: tiv
TI: al, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, silenceMode: off, postMapMode: on
midiProgram: pianol

status: +, duration: 000.0--20.06

(i)nstrument 64 (generalMidiPercussion: lowConga)

(t)ime range 00.0--20.0

(b)pm constant, 120

(r)hythm pulseTriple, (constant, 4), (basketGen, randomPermutate,
(1,1,2,3)), (constant, 1), (constant, 0.75)

(p)ath auto-lowConga
(E4)
20.00¢(s)

local (f)ield constant, 0

local (o)ctave constant, 0

(a)mplitude randomBeta, 0.4, 0.4, (constant, 0.7), (constant, 0.9)

31

Tutorial 4: Creating and Editing Textures

pan(n)ing constant, 0.5
au(x)iliary none
texture (s)tatic
s0 parallelMotionList, (), 0.0
sl pitchSelectorControl, randomPermutate
s2 levelFieldMonophonic, event
s3 levelOctaveMonophonic, event

texture (d)ynamic none

The TIv command displays all essential attributes of a Texture. Each label in the display corresponds
to an attribute in the Texturelnstance. The TIv display is in two-blocks. The first block gives
parameters that are constant. The first line displays the name of the Texturelnstance (al), the name
of the parent TextureModule (LineGroove), the number of TextureClones (0), and the active
TextureTemperament (TwelveEqual). The second line displays the PitchMode (pitchSpace), the
silenceMode (off), and the postMapMode (on). The third line provides the GM MIDI program

name (pianol). The fourth, indented line displays the Texturelnstance's mute status (where a "o" is
muted and a "+" is non-muted) and the absolute duration the Texture's events.

The second block lists the primary algorithmic controls of the Texture. The names of these
attributes use parenthesis to designate a single-letter abbreviation. The instrument attribute is
displayed first, with the value following the label: instrument number (64), the name of the orchestra
(generalMidiPercussion) and the name of the instrument (lowConga). The next attribute is time-
range, the start and end time in seconds from the beginning of the EventList. A new Texture is
given a default time-range of twenty seconds (00.0--20.0). New Textures, when created, get their
time-range from the active Texture.

The bpm attribute is the tempo in beats per minute. The value is set with the ParameterObject
"constant" to produce a tempo of 120 BPM. In most cases, the bpm control is used to calculate the
duration of rhythms and pulses used in a Texture.

The rhythm attribute designates a Rhythm ParameterObject to control the generation of event
durations. Rhythm ParameterObjects often notate rhythms as lists of Pulses. A Pulse is designated
as a list of three elements: (divisor, multiplier, accent). The duration of a rhythm is calculated by
dividing the time of a beat (from the bpm parameter) by the Pulse divisor, then multiplying the
result by the Pulse multiplier. The value of the "accent" determines if a duration is a note or a rest,
where 1 or a "+" designates a note, 0 or a "o" designates a rest. Thus an eighth note is given as
(2,1,1), a dotted-quarter note as (2,3,1), and dotted-eighth rest as (4,3,0). In the example above, the
ParameterObject "loop" is used with three Pulses: two sixteenth notes (4,1,1) and a duration equal to
a quarter-note tied to a sixteenth note (4,5,1).

The Path attribute gives the name of the Pathlnstance used by this Texture, followed on the next
line by the Multiset pitches that will be used. Pathlnstances are linked to the Texture. Thus, if a
change is made to a Path (with Ple, for example), all Textures that use that Path will reflect the
change. Each Texturelnstance, however, can control the interpretation of a Path in numerous ways.
The Texture PitchMode setting, for example, determines if pitches are derived from a Path in
pitchSpace, pitchClassSpace, or as a setClass. The local field and local octave attributes permit each
Texture to transpose pitches from the Path independently.

32

Tutorial 4: Creating and Editing Textures

The attribute "local field" stores a ParameterObject that controls local transposition of Path pitches.
Values are given in semitones, and can include microtonal transpositions as floating-point values
following the semitone integer. Thus, a transposition of five half-steps and a quarter-tone would be
equal to 5.5. A transposition of a major tenth would be 16. In the example above the attribute value
instructs the Texture to use a ParameterObject called "constant." Note: some EventOutput formats
do not support microtonal pitch specification. In such cases microtones are rounded to the nearest
semitone. The attribute "local octave," similar to local field, controls the octave position of Path
pitches. Each integer represents an octave shift, where 0 is no octave shift, each Path pitch retaining
its original octave register.

The amplitude attribute designates a ParameterObject to control the amplitude of the Texture,
measured in a symbolic range from O to 1. The panning attribute designates the ParameterObject
used to control spatial location in stereo or quadraphonic space. Values are along the unit interval,
from 0 to 1.

The attributes that make up the "auxiliary” listing provide any number of additional
ParameterObjects to control instrument specific parameter fields. The number of parameter fields is
determined by the instrument definition.

The last attributes, "texture static" and "texture dynamic," designate controls specific to particular
TextureModules. The values here can be edited like other attributes.

A second Texture will be created with TIn named "b1" and using instrument 62. The Texture, after
creation, is displayed with the TIv command.

Example 4-9. Creating and viewing a TextureInstance

pi{auto-lowConga}ti{al} :: tin

name this texture: bl

enter instrument number:
(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,6
1,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)

or "?" for instrument help: 62

TI bl created.

pi{auto-muteHiConga}ti{bl} :: tiv
TI: bl, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, silenceMode: off, postMapMode: on
midiProgram: pianol

status: +, duration: 000.0--20.06

(i)nstrument 62 (generalMidiPercussion: muteHiConga)

(t)ime range 00.0--20.0

(b)pm constant, 120

(r)hythm pulseTriple, (constant, 4), (basketGen, randomPermutate,
(1,1,2,3)), (constant, 1), (constant, 0.75)

(p)ath auto-muteHiConga
(D4)
20.00(s)

local (f)ield constant, 0

local (o)ctave constant, 0

(a)mplitude randomBeta, 0.4, 0.4, (constant, 0.7), (constant, 0.9)

pan(n)ing constant, 0.5

au(x)iliary none

texture (s)tatic

s0 parallelMotionList, (), 0.0

33

Tutorial 4: Creating and Editing Textures

sl pitchSelectorControl, randomPermutate
s2 levelFieldMonophonic, event
s3 levelOctaveMonophonic, event

texture (d)ynamic none

This new Texture, though created with the same TextureModule, is a completely autonomous
object. No changes to "al" will have any effect on "b1".

During an athenaCL session a user can create any number of Texturelnstances and save this
collection in an AthenaObject file for latter use. For more information on saving, loading, and
merging AthenaObjects see Chapter 2. To view a list of all current Textures, enter the command
Tlls, for Texturelnstance List.

Example 4-10. Listing all TextureInstances

pi{auto-muteHiConga}ti{bl} :: tils
TextureInstances available:
{name, status,TM,PI,instrument,time,TC}
al + LineGroove auto-lowConga 64 00.0--20.0 0
+ bl + LineGroove auto-muteHiConga 62 00.0--20.0 0

This display shows a list of all Textures, each Texture on a single line. The information given, in
order from left to right, is the name, the mute-status, the parent TM, the PathInstance, the
instrument number, the time-range, and the number of TextureClones. Notice the "+" in front of
Texture "b1": this designates that this Texture is active. To change the active Texture, enter the
command TTo either with a command-line argument or alone:

Example 4-11. Selecting the active TextureInstance

pi{auto-muteHiConga}ti{bl} :: tio al
TI al now active.

pi{auto-muteHiConga}ti{al} ::

In order to compare a single attribute of all Textures, the user can enter the command TEv, for
TextureEnsemble View. TextureEnsemble refers to the collection of all Textures, and all TE
commands process all Textures simultaneously. The user will be prompted to enter an abbreviation
for the desired attribute. Attribute abbreviations are notated in the TIv display labels. Thus the

"o,

attribute abbreviation for "(a)mplitude" is "a"; the attribute abbreviation for "pan(n)ing" is "n." As
with other commands, use of command-line arguments provides flexible control:

Example 4-12. Viewing parameter values for all Textures

pi{auto-muteHiConga}tif{al} :: tev

compare texture parameters: which parameter? a

compare parameters: amplitude

{name,value, }

al randomBeta, 0.4, 0.4, (constant, 0.7), (constant, 0.9)

34

Tutorial 4: Creating and Editing Textures

bl randomBeta, 0.4, 0.4, (constant, 0.7), (constant, 0.9)

pi{auto-muteHiConga}ti{al} :: tev i

compare parameters: instrument

{name,value, }

al 64 (generalMidiPercussion: lowConga)

bl 62 (generalMidiPercussion: muteHiConga)

4.5. Copying and Removing Texture Instances

Texturelnstances can be duplicated with the command TIcp. The user is prompted to enter the
name of the Texture to be copied, and then the name of the copy. The copy can be confirmed by
listing all Textures with the command T1Is.

Example 4-13. Copying a TextureInstance

pi{auto-muteHiConga}ti{al} :: ticp

which TextureInstnace to copy? (name or number 1-2): bl
name this copy of TI 'bl': b2

TextureInstance b2 created.

pi{auto-muteHiConga}ti{b2} :: tils
TextureInstances available:
{name, status,TM,PI,instrument,time,TC}

al + LineGroove auto-lowConga 64 00.0--20.0 0
bl + LineGroove auto-muteHiConga 62 00.0--20.0 0
+ b2 + LineGroove auto-muteHiConga 62 00.0--20.0 0

Textures can be deleted with the command TIrm, for Texturelnstance Remove. The user is
prompted to enter the name of the Texture to be deleted. The removal can be confirmed by listing
all Textures with the command T1ls.

Example 4-14. Removing a Texturelnstance

pi{auto-muteHiConga}ti{b2} :: tirm

which TextureInstnace to delete? (name or number 1-3): b2

are you sure you want to delete texture b2? (y, n, or cancel): y
TI b2 destroyed.

pi{auto-muteHiConga}ti{bl} :: tils
TextureInstances available:
{name, status,TM,PI,instrument,time,TC}
al + LineGroove auto-lowConga 64 00.0--20.0 0
+ bl + LineGroove auto-muteHiConga 62 00.0--20.0 0

pi{auto-muteHiConga}ti{bl} ::

When the active Texture is deleted, as it is above, athenaCL chooses a new Texture to activate, here
choosing "b1." To select a different Texture, use the command Tlo.

35

Tutorial 4: Creating and Editing Textures

4.6. Editing Texturelnstance Attributes

Each attribute of a Texture can be edited to specialize its performance. Some attributes such as
instrument, time-range, and Path are static: they do not change over the duration of a Texture.
Other attributes are dynamic, such as bpm, rhythm, local field, local octave, amplitude and panning,
and can be configured with a wide range of ParameterObjects.

Texture attributes are edited with the Tle command. The command first prompts the user to select
which attribute to edit. Attributes are named by a single-letter abbreviation, as notated in the TIv
display with parenthesis. Next, the current value of the attribute is displayed, followed by a prompt
for the new value. In the following example the time range of Texture "al" is edited:

Example 4-15. Editing a TextureInstance

pi{auto-muteHiConga}ti{bl} :: tie

edit TI bl

which parameter? (i,t,b,r,p,f,0,a,n,x,s,d): t
current time range: 0.0, 20.0

new value: 5, 20

TI bl: parameter time range updated.

pi{auto-muteHiConga}ti{bl} :: tiv
TI: bl, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, silenceMode: off, postMapMode: on
midiProgram: pianol

status: +, duration: 005.0--19.97

(i)nstrument 62 (generalMidiPercussion: muteHiConga)
(t)ime range 05.0--20.0
(b)pm constant, 120
(r)hythm pulseTriple, (constant, 4), (basketGen, randomPermutate,
(1,1,2,3)), (constant, 1), (constant, 0.75)
(p)ath auto-muteHiConga
(D4)
15.00(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude randomBeta, 0.4, 0.4, (constant, 0.7), (constant, 0.9)
pan(n)ing constant, 0.5
au(x)iliary none
texture (s)tatic
s0 parallelMotionList, (), 0.0
sl pitchSelectorControl, randomPermutate
s2 levelFieldMonophonic, event
s3 levelOctaveMonophonic, event

texture (d)ynamic none

In the example above the user select "t" to edit the active Texture's time-range attribute. In general,
new values for attributes must be entered with the same syntax with which they are displayed. In this
example, time-range values are given as two numbers separated by a comma. Deviation from this
syntax will return an error. The user enters 5, 20 to set the time-range attribute to the duration from
5 to 20 seconds.

The command TEe, for TextureEnsemble Edit can be used to edit the entite collection of Textures

with one command. In the following example the user selects the amplitude attribute with "a" and
then enters a new ParameterObject: randomUniform. The randomUniform parameterObject

36

