* Lukes’s RAT Tricks

Pipeline tricks for a RAT world

i The GO&] (E. Goldratt, 1992)

The production of a CG image is a “process of
ongoing improvement”: from a guessed
starting point to the image on film, the main
constraint is often time.

Given the iterative nature of the process, a
constraint on time is just a way to express a
constraint on iteration count

Yet, iterations seem to contribute to nicer
pictures more than “raw” time

:.L A faster turnaround time

A number of points in this chain are natural
candidates for optimization, as a faster
turnaround easily means more iterations

Three of them are:

= Wasted iteration cycles

= Manual “touchup” interventions

= Unlucky guesses for parameter values

“Premature optimization is the root of all Evil”, D. Knuth

i Common problems

= Waste: often the startup procedure of an
iteration is a nontrivial, error prone task

= Touchups: cycles are rarely completely
machine handled, requiring some level of
manual polish, e.g. to annotate results

= Guessing: the right value for a parameter can
often be tricky to find, especially when visual
orthogonality is not intrinsic to the
environment

i Ideas (a.k.a. them Tricks!)

= Extending the s1im command: customizing
MtoR’s idea of what the look of a RIB file is

= Text in RenderMan shaders: most annotations
are about parameters of the scene itself,
better automate that!

= Fast iterations for bias and blur setup: an
example of two highly non orthogonal
settings, well known to all of us

i Extending s1im

An analysis of the RIB generation process in
the MtoR/S1im marriage reveals that MtoR’s
idea of a RIB is heavily relying on S1im’s
perception of the world

<Header>
<Appearance>
Maya <Geometry>
<Appearance>
m <Geometry>
WorldEnd

RIB FrameEnd

“slim GetRIB” RIB for Appearance

:.L Trick #1: s1im subclassing

The s1im command can be thought as a
singleton object: an object of a class that can
be instantiated only once

The goal of the trick is to instantiate the
singleton from a subclass of the s1im object
itself, and make MtoR use our object as
opposed to the original

i TCL: rename

The core of the trick is the TCL command
rename: with this command you can change
the name of any command or procedure in a
TCL interpreter

What we do is we build a procedure called
wrap that renames the original command,
and wraps it with two pieces of code coming
from the user

TCL: wrap

proc wrap {func before after} {

set newName [makeNewName $func]

rename $func $newName

proc $func {args} [subst -nocommands {
$before
set output [eval $newName \$args]
$after

}]

Wrapping slim

wrap slim {
switch -exact [lindex $args 0] {
getRIB {
overload logic here...
b

}
Ao
switch -exact [lindex $args 0] {
getRIB {
more overload logic here,
possibly up to
return $output

i Results of Trick #1

A first application of this trick is the injection of
personalized data into the RIB stream in a
studio/production dependent way

<Usual MtoR Header stuff here>

#slim subclassed _Frame_Setup

Option "user" "string context" [""]

Option "user" "string elementtype" ["final"]
Option "user" "string elementname" ["untitled"]
Option "user" "string jobname" ["untitled"]
Option "user" "string film" [“incredibles"]
Option "user" “float scene" [“12"]

Option "user" “float shot" [“5"]

WorldBegin

<. .

Results of Trick #1

=loix|
Leveraging on that, is
easy to create a Al o
RIBBox specialized in o e
reading in RIB Archives sl
only at the right time
Dteme [erunes <=
. . O Templte ResdbrchiveBox F;J
IfBegin "$user:elementtype == 'final' -)
|| $user:elementtype == 'shadow'" o E;;F;;:m“”°“m“4 f
ReadArchive "rib/wings.rib" [e | 5]
ReadArchive "rib/body.rib" ds e | croc acnmss | ada wescae |
ReadArchive "rib/tail.rib" @ et]2
IfEnd O senamez a
0 fiename3 =

T
@ twesten @

:.L Trick #2: text from a shader

A while ago Alex Segal wrote a DSO that would
behave essentially like the texture() callin
SL, but take EPS files as input

Such an approach is very convenient to use
vector graphics in a render, as all text can
conveniently be converted to outlines in most
packages like Illustrator

This approach is well suited for logos and
commercial graphics used in a render

i Another step: digital typograhy

= A fontis a collection of Beziér trim curves
= Hinting is what makes fonts legible
= PostScript curves don’t carry hints

= PostScript curves are unhandy to generate at
render time from a font file (no, really, it’s
hard!)

i The last drop: I like printf()!

It would be useful to be able to render this piece
of RIB:

Surface “text”
“string fmt[]” [“Frame %d” “Scene %d”]
“float argc[]” [1 1]
“float argv[]” [13 123]

Geometry: a square

i May I present you... freetype!

= The freetype library is able to render character
from over 10 families of formats of fonts

= It’s by far the most used font rendering library
around, at the base of the Qt/KDE and
GTK+/Gnome projects

L ey
|

image of phrase | texture()-like access

i prmanText.so

surface note (float Kd = .7) {

VALY

uniform float _id = text_new ("diffuse = %.3g", O,

0, 1, 1);

text_arg (_id, Kd);

text_font (_id, “/path/to/luxirr.ttf", 0, 100);
float alpha = text(_id, s, t, ds, dt);

Ci=0¢Ci* (1 - alpha) + color (1,0,0) * alpha ;
VA

i Results of Trick #2

Annotating a wedge
sequence is now an
automatized task,
providing for notes in
your preview
framebuffer, cooked
onto your images

allTransGain = 0.000

i Results of Trick #2

The frame decoration
headers (usually added in
comp) can now be
accomplished through a
wrapped s1im command

< Ml

i Trick #3: guessing bias & blur

= During lighting bias and blur setup often
takes longer than actual artistic input

= Lighting intensity is affected by blurred
shadow sampling as well

= Single light contributions are difficult to
see in complex light rigs

10

A first step: shadowmap lighting

A way to actually look
at what’s going on is
to use a simplified
lighting model with
one light at a time

=10l =]

i

=

surface shdbNb () {
b4

Ci = 0;
illuminance (P) { e T
Ci += C1;
} =
} F’:;»Ea\l.\gh. Reves|E context=~’shdbNb’

Shadowmap lighting

The highly contrasted image is an easier way to
estimate the actual effect of the bias and blur

settings

11

:.L Just use shadow () then!

1. Cache geometry rendering P to a file
2. Put a plane in front of the camera

3. Use the cache as a texture to feed into
shadow()

surface shdbNb2 (string pos =
“”: string shdmap = “”) {
point myP = texture(pos);
Ci = 1 - shadow(shdmap,myP);
}

:.L Results of Trick #3

= The shadowmap render can be
hooked into Slim’s shadowmap
node

= Low rendertime (<5 s)

= Low memory usage, render can *= =
be local (no latency for startup) = »s s

= The RIB is fed from Slim into L T —

PRMan using TCL’s open gl
“|prman” w

= Alfred is not needed

12

i The end

All the code will appear soon on
http://www.lucafascione.com

Write to me at
siggraph@lucafascione.com

13

