
1

Lukes’s RAT Tricks

Pipeline tricks for a RAT world

The Goal (E. Goldratt, 1992)

The production of a CG image is a “process of
ongoing improvement”: from a guessed
starting point to the image on film, the main
constraint is often time.

Given the iterative nature of the process, a
constraint on time is just a way to express a
constraint on iteration count

Yet, iterations seem to contribute to nicer
pictures more than “raw” time

2

A faster turnaround time

A number of points in this chain are natural
candidates for optimization, as a faster
turnaround easily means more iterations

Three of them are:
Wasted iteration cycles
Manual “touchup” interventions
Unlucky guesses for parameter values

“Premature optimization is the root of all Evil”, D. Knuth

Common problems

Waste: often the startup procedure of an
iteration is a nontrivial, error prone task
Touchups: cycles are rarely completely
machine handled, requiring some level of
manual polish, e.g. to annotate results
Guessing: the right value for a parameter can
often be tricky to find, especially when visual
orthogonality is not intrinsic to the
environment

3

Ideas (a.k.a. them Tricks!)

Extending the slim command: customizing
MtoR’s idea of what the look of a RIB file is
Text in RenderMan shaders: most annotations
are about parameters of the scene itself,
better automate that!
Fast iterations for bias and blur setup: an
example of two highly non orthogonal
settings, well known to all of us

Extending slim

An analysis of the RIB generation process in
the MtoR/Slim marriage reveals that MtoR’s
idea of a RIB is heavily relying on Slim’s
perception of the world

Maya

MtoR

Slim

RIB for Appearance“slim GetRIB”

RIB

<Header>
<Appearance>
<Geometry>
<Appearance>
<Geometry>
WorldEnd
FrameEnd

4

Trick #1: slim subclassing

The slim command can be thought as a
singleton object: an object of a class that can
be instantiated only once

The goal of the trick is to instantiate the
singleton from a subclass of the slim object
itself, and make MtoR use our object as
opposed to the original

TCL: rename

The core of the trick is the TCL command
rename: with this command you can change
the name of any command or procedure in a
TCL interpreter

What we do is we build a procedure called
wrap that renames the original command,
and wraps it with two pieces of code coming
from the user

5

TCL: wrap

proc wrap {func before after} {
set newName [makeNewName $func]
rename $func $newName
proc $func {args} [subst –nocommands {
$before
set output [eval $newName \$args]
$after

}]
}

Wrapping slim

wrap slim {
switch –exact [lindex $args 0] {

getRIB {
overload logic here...

}
}

} {
switch –exact [lindex $args 0] {

getRIB {
more overload logic here,
possibly up to
return $output

}
}

}

6

Results of Trick #1

A first application of this trick is the injection of
personalized data into the RIB stream in a
studio/production dependent way

<Usual MtoR Header stuff here>
#slim subclassed _Frame_Setup
Option "user" "string context" [""]
Option "user" "string elementtype" ["final"]
Option "user" "string elementname" ["untitled"]
Option "user" "string jobname" ["untitled"]
Option "user" "string film" [“incredibles"]
Option "user" “float scene" [“12"]
Option "user" “float shot" [“5"]
WorldBegin
<...>

Results of Trick #1

Leveraging on that, is
easy to create a
RIBBox specialized in
reading in RIB Archives
only at the right time

IfBegin "$user:elementtype == 'final'
|| $user:elementtype == 'shadow'"

ReadArchive "rib/wings.rib"
ReadArchive "rib/body.rib"
ReadArchive "rib/tail.rib"

IfEnd

7

Trick #2: text from a shader

A while ago Alex Segal wrote a DSO that would
behave essentially like the texture() call in
SL, but take EPS files as input

Such an approach is very convenient to use
vector graphics in a render, as all text can
conveniently be converted to outlines in most
packages like Illustrator

This approach is well suited for logos and
commercial graphics used in a render

Another step: digital typograhy

A font is a collection of Beziér trim curves
Hinting is what makes fonts legible
PostScript curves don’t carry hints
PostScript curves are unhandy to generate at
render time from a font file (no, really, it’s
hard!)

8

The last drop: I like printf()!

It would be useful to be able to render this piece
of RIB:

Surface “text”
“string fmt[]” [“Frame %d” “Scene %d”]
“float argc[]” [1 1]
“float argv[]” [13 123]

Geometry: a square

May I present you... freetype!

The freetype library is able to render character
from over 10 families of formats of fonts
It’s by far the most used font rendering library
around, at the base of the Qt/KDE and
GTK+/Gnome projects

shader

freetype

texture()-like access

phrase

image of phrase

9

prmanText.so

surface note (float Kd = .7) {
/* ... */
uniform float _id = text_new ("diffuse = %.3g", 0,
0, 1, 1);

text_arg (_id, Kd);
text_font (_id, “/path/to/luxirr.ttf", 0, 100);
float alpha = text(_id, s, t, ds, dt);
Ci = Ci * (1 - alpha) + color (1,0,0) * alpha ;
/* ... */
}

Results of Trick #2

Annotating a wedge
sequence is now an
automatized task,
providing for notes in
your preview
framebuffer, cooked
onto your images

10

Results of Trick #2

The frame decoration
headers (usually added in
comp) can now be
accomplished through a
wrapped slim command

Trick #3: guessing bias & blur

During lighting bias and blur setup often
takes longer than actual artistic input
Lighting intensity is affected by blurred
shadow sampling as well
Single light contributions are difficult to
see in complex light rigs

11

A first step: shadowmap lighting

A way to actually look
at what’s going on is
to use a simplified
lighting model with
one light at a time

surface shdbNb () {
Ci = 0;
illuminance (P) {

Ci += Cl;
}

}

Shadowmap lighting

The highly contrasted image is an easier way to
estimate the actual effect of the bias and blur
settings

12

Just use shadow() then!

1. Cache geometry rendering P to a file
2. Put a plane in front of the camera
3. Use the cache as a texture to feed into

shadow()

surface shdbNb2 (string pos =
“”; string shdmap = “”) {

point myP = texture(pos);
Ci = 1 - shadow(shdmap,myP);

}

Results of Trick #3

The shadowmap render can be
hooked into Slim’s shadowmap
node
Low rendertime (<5 s)
Low memory usage, render can
be local (no latency for startup)
The RIB is fed from Slim into
PRMan using TCL’s open
“|prman” w
Alfred is not needed

13

The end

All the code will appear soon on
http://www.lucafascione.com

Write to me at
siggraph@lucafascione.com

